强化学习
计算机科学
模块化(生物学)
不断发展的网络
复杂网络
网络拓扑
进化博弈论
编队网络
优先依附
困境
同种类的
博弈论
人工智能
分布式计算
数学
计算机网络
数理经济学
遗传学
生物
组合数学
万维网
几何学
作者
Chunpeng Du,Yikang Lu,Haoran Meng,Junpyo Park
出处
期刊:Chaos
[American Institute of Physics]
日期:2024-04-01
卷期号:34 (4)
被引量:9
摘要
Complex networks are widespread in real-world environments across diverse domains. Real-world networks tend to form spontaneously through interactions between individual agents. Inspired by this, we design an evolutionary game model in which agents participate in a prisoner’s dilemma game (PDG) with their neighboring agents. Agents can autonomously modify their connections with neighbors using reinforcement learning to avoid unfavorable environments. Interestingly, our findings reveal some remarkable results. Exploiting reinforcement learning-based adaptive networks improves cooperation when juxtaposed with existing PDGs performed on homogeneous networks. At the same time, the network’s topology evolves from homogeneous to heterogeneous states. This change occurs as players gain experience from past games and become more astute in deciding whether to join PDGs with their current neighbors or disconnect from the least profitable neighbors. Instead, they seek out more favorable environments by establishing connections with second-order neighbors with higher rewards. By calculating the degree distribution and modularity of the adaptive network in a steady state, we confirm that the adaptive network follows a power law and has a clear community structure, indicating that the adaptive network is similar to networks in the real world. Our study reports a new phenomenon in evolutionary game theory on networks. It proposes a new perspective to generate scale-free networks, which is generating scale-free networks by the evolution of homogeneous networks rather than typical ways of network growth and preferential connection. Our results provide new aspects to understanding the network structure, the emergence of cooperation, and the behavior of actors in nature and society.
科研通智能强力驱动
Strongly Powered by AbleSci AI