Visualization and Analysis of Oil and Gas Pipeline Corrosion Research: A Bibliometric Data-Mining Approach

可视化 管道(软件) 石油工程 腐蚀 数据可视化 天然气管道 化石燃料 工程类 管道运输 数据科学 计算机科学 法律工程学 建筑工程 土木工程 环境科学 采矿工程 数据挖掘 环境工程 废物管理 冶金 材料科学 机械工程
作者
Lei Xu,Pengfei Yu,Shaomu Wen,Yongfan Tang,Yunfu Wang,Yuan Tian,Ting Mao,Changjun Li
出处
期刊:Journal of Pipeline Systems Engineering and Practice [American Society of Civil Engineers]
卷期号:15 (3) 被引量:2
标识
DOI:10.1061/jpsea2.pseng-1605
摘要

The problem of corrosion in oil and gas pipelines is one of the major factors affecting the process safety and efficient sustainability development of the oil and gas industry. To gain a better understanding of global research trends and dynamics in the field of oil and gas pipeline corrosion and to advance the development of corrosion control technology, we conducted a literature review using a sample of 1,745 papers from the Web of Science (WOS) database published from 2002 to 2022. We employed a bibliometric analysis approach employed to investigate the distribution of publications over time, geographic regions, major organizations, major authors, journal cocitation, and literature cocitation, and to identify research hotspots and frontiers. The results revealed an exponential growth in the overall number of papers, with the most rapid increase occurring in the last 4 years. China, the US, Canada, the United Kingdom, and Brazil emerged as the most active countries in oil and natural gas pipeline corrosion research, and Mexico, Canada, and Australia also exhibited significant influence in the field. The journals Engineering Failure Analysis, Corrosion, and Corrosion Science had the highest number of publications and impact in this domain. Notably, Corrosion Science stood out as the most influential and highly regarded journal in the corrosion field. The fundamental theories and research framework in the realm of oil and natural gas pipeline corrosion have been primarily established, and a large number of research directions and frontier branches are emerging. The impact of flow parameters on corrosion, pipeline reliability assessment, and analysis of corrosion defects and failures are identified as the three main development paths in this field. In terms of research methodologies, machine learning techniques are becoming increasingly prevalent, with a growing number of studies adopting various machine learning methods. Among these methods, explainable deep learning is at the forefront of development in the field of oil and natural gas pipeline corrosion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得30
2秒前
dcy应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
天天快乐应助lucky采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得80
2秒前
Lucas应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
ww发布了新的文献求助10
4秒前
5秒前
隐形曼青应助等待的谷波采纳,获得10
6秒前
6秒前
TIan完成签到,获得积分10
7秒前
科研通AI5应助长情钥匙采纳,获得10
7秒前
cstp完成签到,获得积分10
7秒前
王欣瑶完成签到 ,获得积分10
8秒前
怡然铃铛发布了新的文献求助10
8秒前
施宇宙完成签到,获得积分10
8秒前
小蘑菇应助LL采纳,获得10
8秒前
可爱的函函应助张宇采纳,获得10
9秒前
10秒前
水若琳发布了新的文献求助10
11秒前
星辰大海应助Jing采纳,获得30
12秒前
老乡开下门吧完成签到,获得积分10
12秒前
13秒前
13秒前
郭元强完成签到,获得积分10
13秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826657
求助须知:如何正确求助?哪些是违规求助? 3368959
关于积分的说明 10453258
捐赠科研通 3088511
什么是DOI,文献DOI怎么找? 1699172
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148