HICL: Hashtag-Driven In-Context Learning for Social Media Natural Language Understanding

计算机科学 自然语言理解 社会化媒体 杠杆(统计) 背景(考古学) 自然语言处理 水准点(测量) 语言模型 人工智能 自然语言 情报检索 万维网 古生物学 大地测量学 生物 地理
作者
Hanzhuo Tan,Chunpu Xu,Jing Li,Yuqun Zhang,Zeyang Fang,Zeyu Chen,Baohua Lai
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3384987
摘要

Natural language understanding (NLU) is integral to various social media applications. However, the existing NLU models rely heavily on context for semantic learning, resulting in compromised performance when faced with short and noisy social media content. To address this issue, we leverage in-context learning (ICL), wherein language models learn to make inferences by conditioning on a handful of demonstrations to enrich the context and propose a novel hashtag-driven ICL (HICL) framework. Concretely, we pretrain a model, which employs #hashtags (user-annotated topic labels) to drive BERT-based pretraining through contrastive learning. Our objective here is to enable to gain the ability to incorporate topic-related semantic information, which allows it to retrieve topic-related posts to enrich contexts and enhance social media NLU with noisy contexts. To further integrate the retrieved context with the source text, we employ a gradient-based method to identify trigger terms useful in fusing information from both sources. For empirical studies, we collected 45 M tweets to set up an in-context NLU benchmark, and the experimental results on seven downstream tasks show that HICL substantially advances the previous state-of-the-art results. Furthermore, we conducted an extensive analysis and found that the following hold: 1) combining source input with a top-retrieved post from is more effective than using semantically similar posts and 2) trigger words can largely benefit in merging context from the source and retrieved posts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snailanli完成签到,获得积分10
1秒前
3秒前
4秒前
7秒前
9秒前
LL完成签到,获得积分10
10秒前
snailanli发布了新的文献求助30
10秒前
10秒前
半柚完成签到,获得积分10
12秒前
童白翠发布了新的文献求助10
12秒前
倾听完成签到 ,获得积分10
14秒前
sudaxia100发布了新的文献求助10
15秒前
15秒前
笑点低剑完成签到 ,获得积分10
16秒前
俭朴的身影完成签到,获得积分10
16秒前
carbon发布了新的文献求助10
17秒前
ssss完成签到,获得积分10
18秒前
淀粉肠发布了新的文献求助10
19秒前
22秒前
自由的雪一完成签到,获得积分10
24秒前
24秒前
小二郎应助Lsy采纳,获得10
25秒前
He发布了新的文献求助30
26秒前
QQ发布了新的文献求助10
29秒前
斯文败类应助chenyu采纳,获得10
32秒前
carbon完成签到,获得积分20
32秒前
32秒前
咖啡八块八完成签到 ,获得积分10
33秒前
情怀应助Bin_Liu采纳,获得10
36秒前
浮生发布了新的文献求助100
36秒前
37秒前
tao完成签到,获得积分10
38秒前
留胡子的一手完成签到,获得积分20
39秒前
乔心发布了新的文献求助10
44秒前
44秒前
45秒前
浮生完成签到 ,获得积分10
47秒前
阿信必发JACS完成签到,获得积分10
48秒前
48秒前
49秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824335
求助须知:如何正确求助?哪些是违规求助? 3366644
关于积分的说明 10441882
捐赠科研通 3085931
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816425
科研通“疑难数据库(出版商)”最低求助积分说明 769640