亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-efficiency spatially guided learning network for lymphoblastic leukemia detection in bone marrow microscopy images

淋巴细胞白血病 骨髓 显微镜 白血病 计算机科学 人工智能 癌症研究 医学 生物医学工程 病理 内科学
作者
Liye Mei,Chao Lian,Suyang Han,Zhaoyi Ye,Yuyang Hua,Meixing Sun,Jing He,Zhiwei Ye,Mengqing Mei,Yaxiaer Yalikun,Hui Shen,Lei Cheng,Bei Xiong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:196 (Pt B): 110860-110860
标识
DOI:10.1016/j.compbiomed.2025.110860
摘要

Leukemia is a hematologic tumor that proliferates in bone marrow and seriously affects the survival of patients. Early and accurate diagnosis is crucial for effective leukemia treatment. Traditional diagnostic methods rely on experts' subjective analysis of bone marrow smears microscopic images. This approach is time-consuming and complex. Despite recent advances in deep learning, automated leukemia detection remains limited due to the scarcity of high-quality datasets, the prevailing focus on single-cell image classification rather than precise cell-level detection in whole slide images, along with challenges such as morphological heterogeneity, uneven staining, scale variation, and occluded cell boundary in bone marrow smears. To address these challenges, we construct a novel dataset comprising 1794 high-quality microscopic images, establishing a new benchmark for lymphocytic leukemia detection. Additionally, we develop a fully automated diagnostic method based on spatially-guided learning (SGLNet), enabling rapid whole slide analysis of leukemia. Specifically, we introduce several innovative enhancements to the baseline algorithm, including the spatially-guided learning framework, scale-aware fusion module, small object-enhancing mechanisms, and efficient intersection over union loss function. These improvements effectively address the impact of morphological similarity and complex backgrounds in leukemia detection, significantly enhancing detection accuracy. Finally, the results show that SGLNet achieves mean average precision scores of 95.9 % and 98.6 % in detecting acute lymphoblastic leukemia and chronic lymphocytic leukemia, respectively. These results demonstrate the efficiency and accuracy of our method in identifying lymphoblastic leukemia cells, significantly enhancing large-scale clinical diagnosis, and supporting clinicians in developing personalized treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Airy完成签到,获得积分10
1秒前
4秒前
整齐谷芹发布了新的文献求助10
5秒前
YifanCheng关注了科研通微信公众号
7秒前
吴彬完成签到 ,获得积分10
7秒前
牛角面包发布了新的文献求助10
10秒前
liwang9301完成签到,获得积分10
10秒前
Hillson完成签到,获得积分10
12秒前
27758发布了新的文献求助20
12秒前
深情安青应助沉静早晨采纳,获得30
13秒前
梦在彼岸完成签到,获得积分10
13秒前
AX完成签到,获得积分10
15秒前
20秒前
牛角面包完成签到,获得积分20
24秒前
沉静早晨发布了新的文献求助30
25秒前
研友_VZG7GZ应助27758采纳,获得10
26秒前
29秒前
30秒前
Henvy应助Yancey采纳,获得10
31秒前
沉静早晨完成签到,获得积分10
34秒前
淡淡山兰完成签到,获得积分10
34秒前
完美世界应助bukeshuo采纳,获得10
35秒前
36秒前
37秒前
41秒前
小吴完成签到,获得积分10
42秒前
ljh024发布了新的文献求助10
44秒前
46秒前
49秒前
lx发布了新的文献求助10
50秒前
50秒前
池雨完成签到 ,获得积分10
52秒前
yue完成签到 ,获得积分10
53秒前
bukeshuo完成签到,获得积分10
53秒前
54秒前
55秒前
利于蓄力发布了新的文献求助10
56秒前
ljh024完成签到,获得积分10
56秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
微笑夏青发布了新的文献求助10
58秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334757
求助须知:如何正确求助?哪些是违规求助? 4472784
关于积分的说明 13920782
捐赠科研通 4366762
什么是DOI,文献DOI怎么找? 2399217
邀请新用户注册赠送积分活动 1392372
关于科研通互助平台的介绍 1363284