Advances in photoactivated carbon-based nanostructured materials for targeted cancer therapy

癌症治疗 纳米技术 碳纤维 癌症 材料科学 化学 医学 内科学 复合数 复合材料
作者
Maryam Eftekharifar,Reza Heidari,Neda Mohaghegh,Alireza Hassani Najafabadi,Hossein Heidari
出处
期刊:Advanced Drug Delivery Reviews [Elsevier BV]
卷期号:: 115604-115604
标识
DOI:10.1016/j.addr.2025.115604
摘要

In this review, we explore key innovations in photoactivated therapeutic programming of carbon-based nanomaterials (CBNs), focusing on their diverse nanostructural configurations and their exceptional photothermal, photochemical, and photoacoustic properties. These attributes position CBNs as remarkable phototherapeutic agents, capable of addressing critical challenges in targeted cancer therapy through their precision, multifunctionality, and adaptability to specific therapeutic modalities. We will explore their diverse derivatives, and the role of chemical augmentation and site-specific surface functionalisation, which are pivotal in optimising the targeting and efficacy of phototherapeutic interventions. The biological and physical relevance of this ever-growing library of nanomaterials in targeted phototherapy will be thoroughly explored. Dynamic photo-triggering of the underlying molecular mechanisms of action e.g., energy conversion modalities lie at the heart of these therapeutic innovations. We will further discuss the tunability and programming of these carriers and structure-function alterations at specific therapeutic wavelengths. The application space of phototherapies is thoroughly mapped exploring the three primary approaches of photothermal therapy, photodynamic therapy and photochemical internalisation as well as emerging techniques and promising multimodal approaches that combine two or more of these processes. The specificity of the target tissue site and the approach under study forms another critical focus area of this review, with an emphasis on three types of cancer-breast cancer, lung cancer, and gliomas-that have demonstrated some of the most promising outcomes from photomedicine. We also provide a perspective on in vitro and in vivo validation and preclinical testing of CBNs for phototherapeutic applications. Finally, we reflect on the potential of CBNs to revolutionise targeted cancer therapy through data-driven materials design and integration with computational tools for biophysical performance optimisation. The exciting integration of machine learning into nanoparticle research and phototherapy has potential to fundamentally transform the landscape of nanomedicine. These techniques ranging from supervised learning algorithms such as random forests and support vector machines to more advanced neural networks and deep learning, can enable unprecedented precision in predicting, optimising, and tailoring the properties of nanoparticles for targeted applications. The transformative impact of photoactivated CBNs in advancing cancer treatment, paves the way for their clinical application and widespread adoption in personalised photomedicine. We conclude with a section on the current challenges facing the reproducibility, manufacturing throughput, and biocompatibility of these nanostructured materials including their long-term effects in trials and degradation profiles in biological systems as evaluated in vitro and in vivo.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马冬梅发布了新的文献求助10
1秒前
1秒前
Tao完成签到,获得积分10
1秒前
2秒前
黄金矿工发布了新的文献求助10
2秒前
唯唯唯唯唯唯完成签到,获得积分10
2秒前
wf完成签到,获得积分10
2秒前
4秒前
红叶发布了新的文献求助10
4秒前
bobo完成签到 ,获得积分10
4秒前
曹佳琦发布了新的文献求助10
4秒前
huy完成签到 ,获得积分10
4秒前
fissh完成签到,获得积分10
4秒前
4秒前
zwl发布了新的文献求助10
5秒前
5秒前
Winnie发布了新的文献求助10
5秒前
沉静的电源完成签到,获得积分20
5秒前
中岛悠斗完成签到,获得积分10
6秒前
Charon完成签到,获得积分10
6秒前
张琦完成签到,获得积分10
6秒前
自然的思松完成签到,获得积分10
7秒前
7秒前
共享精神应助彩色的哲瀚采纳,获得10
7秒前
jerry完成签到 ,获得积分10
7秒前
白云完成签到,获得积分10
7秒前
布布完成签到,获得积分10
8秒前
尉迟剑心发布了新的文献求助10
8秒前
王五完成签到,获得积分10
8秒前
wuchang2617完成签到,获得积分10
8秒前
Charon发布了新的文献求助10
9秒前
纯真的柔发布了新的文献求助10
9秒前
yanyimeng完成签到,获得积分10
9秒前
俞若枫完成签到,获得积分10
9秒前
SC武发布了新的文献求助10
9秒前
攀登转化高峰完成签到,获得积分10
10秒前
10秒前
结实康发布了新的文献求助10
10秒前
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
新时代大学生思想政治教育主题研究 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011