A Closer Look at the Joint Training of Object Detection and Re-Identification in Multi-Object Tracking

判别式 计算机科学 目标检测 人工智能 对象(语法) 推论 假阳性悖论 光学(聚焦) 鉴定(生物学) 机器学习 任务(项目管理) 视频跟踪 特征(语言学) 基本事实 模式识别(心理学) 计算机视觉 工程类 植物 生物 系统工程 哲学 语言学 物理 光学
作者
Tianyi Liang,Baopu Li,Mengzhu Wang,Huibin Tan,Zhigang Luo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 267-280 被引量:13
标识
DOI:10.1109/tip.2022.3227814
摘要

Unifying object detection and re-identification (ReID) into a single network enables faster multi-object tracking (MOT), while this multi-task setting poses challenges for training. In this work, we dissect the joint training of detection and ReID from two dimensions: label assignment and loss function. We find previous works generally overlook them and directly borrow the practices from object detection, inevitably causing inferior performance. Specifically, we identify a qualified label assignment for MOT should: 1) have the assignment cost aware of ReID cost, not just detection cost; 2) provide sufficient positive samples for robust feature learning while avoiding ambiguous positives (i.e., the positives shared by different ground-truth objects). To achieve the above goals, we first propose Identity-aware Label Assignment, which jointly considers the assignment cost of detection and ReID to select positive samples for each instance without ambiguities. Moreover, we advance a novel Discriminative Focal Loss that integrates ReID predictions with Focal Loss to focus the training on the discriminative samples. Finally, we upgrade the strong baseline FairMOT with our techniques and achieve up to 7.0 MOTA / 54.1% IDs improvements on MOT16/17/20 benchmarks under favorable inference speed, which verifies our tailored label assignment and loss function for MOT are superior to those inherited from object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
control完成签到,获得积分10
刚刚
斐嘿嘿发布了新的文献求助10
1秒前
寒冷丹雪完成签到,获得积分10
1秒前
田甜发布了新的文献求助10
6秒前
hjyylab应助lshu文采纳,获得30
6秒前
8秒前
9秒前
byyyy完成签到,获得积分10
9秒前
WW发布了新的文献求助10
13秒前
一一完成签到,获得积分10
15秒前
mei完成签到,获得积分10
16秒前
背后书雪完成签到 ,获得积分10
17秒前
WW完成签到,获得积分20
18秒前
芒果完成签到,获得积分10
18秒前
humengxiao完成签到,获得积分10
19秒前
缓慢的如波完成签到,获得积分10
21秒前
彭于晏应助石头采纳,获得10
22秒前
Goodluck完成签到 ,获得积分10
22秒前
111完成签到,获得积分10
23秒前
FashionBoy应助研友_LwlAgn采纳,获得10
24秒前
青春完成签到 ,获得积分10
25秒前
Ava应助Motorhead采纳,获得10
27秒前
FashionBoy应助研友_8Y2DXL采纳,获得10
30秒前
30秒前
31秒前
科研通AI5应助Yoel采纳,获得10
31秒前
科研通AI5应助温柔的迎荷采纳,获得10
36秒前
刘一安完成签到 ,获得积分10
36秒前
着急的万声完成签到,获得积分20
36秒前
llllhh完成签到,获得积分10
36秒前
36秒前
37秒前
37秒前
太渊完成签到 ,获得积分10
37秒前
徐凤年发布了新的文献求助10
38秒前
fqy发布了新的文献求助10
38秒前
38秒前
tzk发布了新的文献求助10
40秒前
Motorhead发布了新的文献求助10
42秒前
WDNet发布了新的文献求助10
42秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Design and construction rules for mechanical components of FBR nuclear islands: RCC-MR. Tome 3: testing methods 460
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838438
求助须知:如何正确求助?哪些是违规求助? 3380785
关于积分的说明 10515798
捐赠科研通 3100383
什么是DOI,文献DOI怎么找? 1707474
邀请新用户注册赠送积分活动 821754
科研通“疑难数据库(出版商)”最低求助积分说明 772930