Multiphysics‐Informed Neural Networks for Coupled Soil Hydrothermal Modeling

人工神经网络 含水量 过度拟合 非线性系统 多物理 土壤科学 理查兹方程 环境科学 土壤水分 计算机科学 岩土工程 工程类 人工智能 物理 有限元法 结构工程 量子力学
作者
Yanling Wang,Liangsheng Shi,Xiaolong Hu,Wenxiang Song,Lijun Wang
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1) 被引量:15
标识
DOI:10.1029/2022wr031960
摘要

Abstract Soil water and heat transport are two physical processes that are described by the Richardson–Richards equation and heat transport equation, respectively. Soil water and heat motion directly control transport or indirectly influence parameters. The physics‐informed neural network (PINN) is a new method that combines deep learning and physical laws that approximates and learns physical dynamics better than traditional data‐driven deep learning methods. In this study, we propose multiphysics‐informed neural networks for soil water‐heat systems, in which the soil moisture and temperature information complement each other well. With our framework, existing soil moisture neural networks are improved to reduce their dependency on the soil moisture measurement density. Furthermore, soil moisture data are employed to promote soil temperature dynamic learning and soil thermal conductivity estimation. Moreover, soil temperature data assist in recovering the nonlinearity of the soil hydraulic conductivity through hydrothermal coupling constraints, allowing better estimations of the soil water flux density. The gradient‐based annealing method is applied to adapt the loss function, which satisfactorily balances the water‐heat transport governing equation constraints on the neural networks. The robustness and generalizability of our framework are examined under diverse scenarios. This work demonstrates the mutual compensation of multisource data in coupled physical processes in a deep learning framework and highlights the significance of appropriate multiphysical constraints designed for nonlinear parameter recovery in PINNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sideaeye发布了新的文献求助10
刚刚
奋斗的三德完成签到,获得积分10
1秒前
1秒前
2秒前
上官翠花发布了新的文献求助10
3秒前
4秒前
4秒前
ytxu完成签到,获得积分20
6秒前
6秒前
Li发布了新的文献求助10
6秒前
科研小学生完成签到,获得积分10
6秒前
rrrrr发布了新的文献求助10
7秒前
7秒前
7秒前
细腻的小虾米完成签到,获得积分10
8秒前
8秒前
善学以致用应助sideaeye采纳,获得10
10秒前
10秒前
情红锐完成签到,获得积分10
11秒前
充电宝应助小白t73采纳,获得10
12秒前
大个应助小白t73采纳,获得10
12秒前
12秒前
在水一方应助小白t73采纳,获得10
12秒前
12秒前
banxia完成签到 ,获得积分10
13秒前
14秒前
竹子发布了新的文献求助20
14秒前
机灵柚子应助冷艳采白采纳,获得10
15秒前
16秒前
啊啊发布了新的文献求助10
17秒前
17秒前
Orange应助咩咩羊采纳,获得10
17秒前
一科研土豆完成签到,获得积分10
19秒前
牙膏发布了新的文献求助10
20秒前
优美的唇彩完成签到,获得积分10
21秒前
22秒前
jenningseastera应助yg采纳,获得10
22秒前
俊逸沛菡发布了新的文献求助10
23秒前
小二郎应助小兔叽采纳,获得10
23秒前
lizzz完成签到,获得积分10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810727
求助须知:如何正确求助?哪些是违规求助? 3355214
关于积分的说明 10374836
捐赠科研通 3071996
什么是DOI,文献DOI怎么找? 1687124
邀请新用户注册赠送积分活动 811458
科研通“疑难数据库(出版商)”最低求助积分说明 766652