Augmented Multi-Party Computation Against Gradient Leakage in Federated Learning

计算机科学 服务器 加密 计算 渲染(计算机图形) 密码学 分布式计算 计算机网络 私人信息检索 理论计算机科学 计算机安全 算法 人工智能
作者
Chi Zhang,Sotthiwat Ekanut,Liangli Zhen,Zengxiang Li
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:10 (6): 742-751 被引量:38
标识
DOI:10.1109/tbdata.2022.3208736
摘要

Multi-Party Computation (MPC) provides an effective cryptographic solution for distributed computing systems so that local models with sensitive information are encrypted before sending to the centralized servers for aggregation. Though direct local knowledge leakages are eliminated in MPC-based algorithms, we observe the server can still obtain the local information indirectly in many scenarios, or even reveal the groundtruth images through methods like Deep Leakage from Gradients (DLG). To eliminate such possibilities and provide stronger protections, we propose an augmented MPC approach by encrypting local models with two rounds of decomposition before transmitting to the server. The proposed solution allows us to remove the constraint that servers must be honest in the general federated learning settings since the true global model is hidden from the servers. Specifically, the augmented MPC algorithm encodes local models into multiple secret shares in the first round, then each share is furthermore split into a public share and a private share. Consequences of such a two-round decomposition are that the augmented algorithm fully inherits the advantages of standard MPC by providing lossless encryption and decryption while simultaneously rendering the global model invisible to the central server. Both theoretical analysis and experimental verification demonstrate that such an augmented solution can provide stronger protections for the security and privacy of the training data, with minimal extra communication and computation costs incurred.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾祥钰发布了新的文献求助10
1秒前
luo完成签到,获得积分10
1秒前
Richard发布了新的文献求助10
1秒前
germini99发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
2秒前
科研通AI2S应助ertredffg采纳,获得10
3秒前
3秒前
芝麻汤圆完成签到,获得积分10
3秒前
傲娇的沁完成签到,获得积分10
3秒前
zzzz发布了新的文献求助10
4秒前
changping应助欢呼的念瑶采纳,获得10
5秒前
5秒前
壮观的冰双完成签到,获得积分10
6秒前
6秒前
Cactus发布了新的文献求助10
6秒前
陶醉清发布了新的文献求助10
6秒前
Foch发布了新的文献求助10
7秒前
乐正如娆发布了新的文献求助10
7秒前
科研通AI5应助tong采纳,获得10
7秒前
丹丹发布了新的文献求助10
8秒前
8秒前
研究生end应助迷路的煎蛋采纳,获得10
8秒前
zxldylan完成签到,获得积分10
8秒前
joy12138发布了新的文献求助10
8秒前
贪玩的豪英完成签到,获得积分10
9秒前
林子发布了新的文献求助10
9秒前
研究生end应助高贵宛海采纳,获得10
9秒前
germini99完成签到,获得积分10
10秒前
huandiyu发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
柠檬完成签到 ,获得积分10
12秒前
科研通AI6应助劳恩特采纳,获得30
12秒前
13秒前
痞子毛发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071945
求助须知:如何正确求助?哪些是违规求助? 4292467
关于积分的说明 13374776
捐赠科研通 4113406
什么是DOI,文献DOI怎么找? 2252418
邀请新用户注册赠送积分活动 1257312
关于科研通互助平台的介绍 1190103