Fisher score and Matthews correlation coefficient-based feature subset selection for heart disease diagnosis using support vector machines

特征选择 支持向量机 人工智能 模式识别(心理学) 计分算法 计算机科学 核(代数) 费希尔核 特征(语言学) 机器学习 数据挖掘 数学 特征向量 核方法 核Fisher判别分析 哲学 组合数学 语言学
作者
Syed Muhammad Saqlain,Muhammad Sher,Faiz Ali Shah,Imran Khan,Muhammad Usman Ashraf,Muhammad Awais,Anwar Ghani
出处
期刊:Knowledge and Information Systems [Springer Science+Business Media]
卷期号:58 (1): 139-167 被引量:134
标识
DOI:10.1007/s10115-018-1185-y
摘要

Heart is one of the essential operating organs of the human body and its failure is a major contributing factor toward the human deaths. Coronary heart disease may be asymptotic but can be anticipated through the medical tests and daily life routine of the subject. Diagnosis of the coronary heart disease needs a specialized medical resource with the plenty of experience. All over the world and particularly in the developing countries, there is a lack of such experts which make the diagnosis more difficult. In this paper, we present a clinical heart disease diagnostic system by proposing feature subset selection methodology with an object of achieving improved performance. The proposed methodology presents three algorithms for selecting candidate feature subsets: (1) mean Fisher score-based feature selection algorithm, (2) forward feature selection algorithm and (3) reverse feature selection algorithm. Feature subset selection algorithm is presented to select the most decisive subset from the candidate feature subsets. The features are added to the feature subsets on the basis of their individual Fisher scores, while the selection of a feature subset depends on its Matthews correlation coefficient score and dimension. The selected feature subset with the reduced dimension is fed to the RBF kernel-based SVM which results in binary classification: (1) heart disease patient and (2) normal control subject. The proposed methodology is validated through accuracy, specificity and sensitivity using four UCI datasets, i.e., Cleveland, Switzerland, Hungarian and SPECTF. The statistical results achieved using the proposed technique are shown in comparison with the existing techniques reflecting its better performance. It has an accuracy of 81.19, 84.52, 92.68 and 82.7% for Cleveland, Hungarian, Switzerland and SPECTF, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助伶俐绿柏采纳,获得10
1秒前
研友_VZG7GZ应助可可采纳,获得10
1秒前
cczltdy完成签到,获得积分10
1秒前
1秒前
奋斗忆灵发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
一生何求完成签到,获得积分10
2秒前
我是老大应助心神依然采纳,获得10
2秒前
LDDDGR发布了新的文献求助10
3秒前
终生科研徒刑完成签到 ,获得积分10
3秒前
4秒前
方寸发布了新的文献求助10
4秒前
wqkkk发布了新的文献求助10
4秒前
4秒前
4秒前
大模型应助l98916采纳,获得10
4秒前
summer完成签到,获得积分10
4秒前
神魔啥完成签到,获得积分10
5秒前
CatC完成签到,获得积分10
5秒前
5秒前
SciGPT应助995采纳,获得10
5秒前
tcy完成签到,获得积分10
6秒前
zhouyu驳回了桐桐应助
6秒前
6秒前
科研通AI2S应助悦耳的依风采纳,获得10
7秒前
SciGPT应助奋斗忆灵采纳,获得10
7秒前
如意草丛发布了新的文献求助10
7秒前
老板别打烊完成签到,获得积分10
7秒前
一生何求发布了新的文献求助10
7秒前
17完成签到,获得积分10
8秒前
JamesHao发布了新的文献求助10
8秒前
辛中鹤关注了科研通微信公众号
8秒前
今后应助摸摸头采纳,获得10
8秒前
常佳楠发布了新的文献求助10
8秒前
aabsd发布了新的文献求助10
9秒前
wasd完成签到,获得积分20
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792971
求助须知:如何正确求助?哪些是违规求助? 3337641
关于积分的说明 10286083
捐赠科研通 3054212
什么是DOI,文献DOI怎么找? 1675888
邀请新用户注册赠送积分活动 803875
科研通“疑难数据库(出版商)”最低求助积分说明 761578