吸引子
Rössler吸引子
数学
随机紧集
不变(物理)
马尔可夫链
固定点
集合(抽象数据类型)
危机
统计物理学
离散数学
随机元素
数学分析
随机变量
计算机科学
物理
统计
非线性系统
程序设计语言
分叉
量子力学
数学物理
标识
DOI:10.1017/s0024610700001915
摘要
The notion of an attractor for a random dynamical system with respect to a general collection of deterministic sets is introduced. This comprises, in particular, global point attractors and global set attractors. After deriving a necessary and sufficient condition for existence of the corresponding attractors it is proved that a global set attractor always contains all unstable sets of all of its subsets. Then it is shown that in general random point attractors, in contrast to deterministic point attractors, do not support all invariant measures of the system. However, for white noise systems it holds that the minimal point attractor supports all invariant Markov measures of the system.
科研通智能强力驱动
Strongly Powered by AbleSci AI