Multi-target tracking for unmanned aerial vehicle swarms using deep reinforcement learning

强化学习 计算机科学 可扩展性 人工智能 维数之咒 马尔可夫决策过程 交叉口(航空) 群体行为 机器学习 马尔可夫过程 数学 工程类 数据库 统计 航空航天工程
作者
Wenhong Zhou,Zhihong Liu,Jie Li,Xin Xu,Lincheng Shen
出处
期刊:Neurocomputing [Elsevier]
卷期号:466: 285-297 被引量:63
标识
DOI:10.1016/j.neucom.2021.09.044
摘要

In recent years, deep reinforcement learning (DRL) has proved its great potential in multi-agent cooperation. However, how to apply DRL to multi-target tracking (MTT) problem for unmanned aerial vehicle (UAV) swarms is challenging: 1) the scale of UAVs may be large, but the existing multi-agent reinforcement learning (MARL) methods that rely on global or joint information of all agents suffer from the dimensionality curse; 2) the dimension of each UAV’s received information is variable, which is incompatible with the neural networks with fixed input dimensions; 3) the UAVs are homogeneous and interchangeable that each UAV’s policy should be irrelevant to the permutation of its received information. To this end, we propose a DRL method for UAV swarms to solve the MTT problem. Firstly, a decentralized swarm-oriented Markov Decision Process (MDP) model is presented for UAV swarms, which involves each UAV’s local communication and partial observation. Secondly, to achieve better scalability, a cartogram feature representation (FR) is proposed to integrate the variable-dimensional information set into a fixed-shape input variable, and the cartogram FR can also maintain the permutation irrelevance to the information. Then, the double deep Q-learning network with dueling architecture is adapted to the MTT problem, and the experience-sharing training mechanism is adopted to learn the shared cooperative policy for UAV swarms. Extensive experiments are provided and the results show that our method can successfully learn a cooperative tracking policy for UAV swarms and outperforms the baseline method in the tracking ratio and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zas完成签到,获得积分10
1秒前
ADGAI完成签到,获得积分10
1秒前
天地一体完成签到,获得积分10
1秒前
1秒前
wdd完成签到 ,获得积分10
1秒前
米欧完成签到,获得积分10
2秒前
苹果画板完成签到,获得积分10
4秒前
xiaoyaoyou完成签到,获得积分10
4秒前
蝙蝠发布了新的文献求助10
4秒前
WN发布了新的文献求助10
4秒前
5秒前
星辰大海应助5433采纳,获得10
5秒前
5秒前
6秒前
yangya完成签到,获得积分10
7秒前
劳恩特应助hellosci666采纳,获得10
7秒前
8秒前
小蘑菇应助田安平采纳,获得10
8秒前
无私的凌萱完成签到,获得积分10
8秒前
平淡凡柔发布了新的文献求助10
9秒前
9秒前
乐乐应助Eason采纳,获得10
9秒前
guoli完成签到,获得积分10
10秒前
无语的沛春完成签到,获得积分10
10秒前
清寒完成签到,获得积分10
11秒前
听风完成签到,获得积分10
11秒前
11秒前
彭于晏应助等待黎明采纳,获得10
12秒前
Yasing完成签到,获得积分10
12秒前
朴素的雪瑶完成签到,获得积分10
12秒前
12秒前
huk发布了新的文献求助10
13秒前
缥缈书本完成签到 ,获得积分10
13秒前
研友_VZG7GZ应助跳跃的紫文采纳,获得30
14秒前
李大白完成签到 ,获得积分10
14秒前
百尺竿头完成签到,获得积分10
14秒前
微糖应助小天使海蒂采纳,获得10
14秒前
情怀应助WS采纳,获得10
14秒前
橙是什么呈完成签到,获得积分10
14秒前
无限毛豆发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402166
求助须知:如何正确求助?哪些是违规求助? 4520720
关于积分的说明 14081778
捐赠科研通 4434524
什么是DOI,文献DOI怎么找? 2434397
邀请新用户注册赠送积分活动 1426632
关于科研通互助平台的介绍 1405383