VSCode-V2: Dynamic Prompt Learning for General Visual Salient and Camouflaged Object Detection With Two-Stage Optimization

作者
Ziyang Luo,Nian Liu,Xuguang Yang,Dingwen Zhang,Deng-Ping Fan,Fahad Shahbaz Khan,Junwei Han
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-17
标识
DOI:10.1109/tpami.2025.3635136
摘要

Salient object detection (SOD) and camouflaged object detection (COD) are related but distinct binary mapping tasks, each involving multiple modalities that share commonalities while maintaining unique characteristics. Existing approaches often rely on complex, task-specific architectures, leading to redundancy and limited generalization. Our previous work, VSCode, introduced a generalist model that effectively handles four SOD tasks and two COD tasks. VSCode leveraged VST as its foundation model and incorporated 2D prompts within an encoder-decoder framework to capture domain and task-specific knowledge, utilizing a prompt discrimination loss to optimize the model. Building upon the proven effectiveness of our previous work VSCode, we identify opportunities to further strengthen generalization capabilities through focused modifications in model design and optimization strategy. To unlock this potential, we propose VSCode-v2, an extension that introduces a Mixture of Prompt Experts (MoPE) layer to generate adaptive prompts. We also redesign the training process into a two-stage approach: first learning shared features across tasks, then capturing specific characteristics. To preserve knowledge during this process, we incorporate distillation from our conference version model. Furthermore, we propose a contrastive learning mechanism with data augmentation to strengthen the relationships between prompts and feature representations. VSCode-v2 demonstrates balanced performance improvements across six SOD and COD tasks. Moreover, VSCode-v2 effectively handles various multimodal inputs and exhibits zero-shot generalization capability to novel tasks, such as RGB-D Video SOD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zh完成签到,获得积分10
刚刚
minty完成签到,获得积分10
1秒前
xkkk完成签到,获得积分10
1秒前
回眸是明眸完成签到,获得积分10
1秒前
白紫寒完成签到,获得积分10
1秒前
1秒前
smile完成签到,获得积分10
1秒前
一觉睡到小时候完成签到,获得积分10
1秒前
1秒前
L_完成签到,获得积分10
1秒前
闪光灯完成签到,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Zx_1993应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得30
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
April完成签到,获得积分10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
李子潭应助科研通管家采纳,获得20
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
rorocris发布了新的文献求助10
2秒前
Zx_1993应助科研通管家采纳,获得20
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得30
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
研友_8op0RL完成签到,获得积分10
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337861
求助须知:如何正确求助?哪些是违规求助? 4475018
关于积分的说明 13926822
捐赠科研通 4370019
什么是DOI,文献DOI怎么找? 2401173
邀请新用户注册赠送积分活动 1394198
关于科研通互助平台的介绍 1366058