Engineered Chemical Utilization of CO2 to Methanol via Direct and Indirect Hydrogenation Pathways: A Review

甲醇 化学 环境科学 有机化学 工艺工程 废物管理 化学工程 工程类
作者
Busha Assaba Fayisa,Youwei Yang,Ziheng Zhen,Mei‐Yan Wang,Jing Lv,Yue Wang,Xinbin Ma
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (29): 10319-10335 被引量:48
标识
DOI:10.1021/acs.iecr.2c00402
摘要

Nowadays, more than 80% of the world's energy supply is provided by nonrenewable fossil fuels (oil, coal, and natural gas), which are the main sources of CO2 emission. The conversion of CO2 into the most useful organic chemicals (methanol and ethylene glycol (EG)) not only effectively mitigates CO2 emissions but also produces value-added chemicals and replaces nonrenewable energy sources. This Review provides a comprehensive view of the significant research progress on indirect CO2 hydrogenation to methanol and EG through the ethylene carbonate intermediate. First, the advances and challenges of direct catalytic hydrogenation of CO2 to methanol are addressed. Subsequently, the advances in CO2 epoxidation to cyclic carbonates, particularly to ethylene carbonate, are summarized. This matured and commercialized ethylene carbonate (EC) production route is vital because of the efficient production of EG and methanol from catalytic hydrogenation of EC and hydrolysis of EC to EG, which replaces the conventional EG production process by hydration of ethylene oxide. Then, the progress on the catalytic hydrogenation of CO2-derived EC is discussed in detail, focusing on Cu-based heterogeneous catalysts. We provided a detailed discussion with emphasis on the nature, evolution, and precise role of active sites in Cu-based catalysts, including other influencing factors such as the preparation method, support, and addition of promoters. Moreover, the possible hydrogenation reaction mechanism, reaction conditions, design optimization, and on-site assessment of Cu-based catalysts for EC hydrogenation are included. Lastly, we provided a summary and outlook.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
lk发布了新的文献求助10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
zoma完成签到,获得积分10
刚刚
1秒前
蜜尾石莲猬关注了科研通微信公众号
1秒前
1秒前
Owen应助务实的姿采纳,获得10
1秒前
112233445566完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
ANKAR发布了新的文献求助30
4秒前
4秒前
4秒前
咖啡泡茶完成签到,获得积分10
5秒前
木小紫发布了新的文献求助10
5秒前
乐乐应助清爽白薇采纳,获得30
5秒前
万能图书馆应助chen采纳,获得10
6秒前
6秒前
Genius发布了新的文献求助10
6秒前
刘欣悦发布了新的文献求助10
6秒前
7秒前
基拉发布了新的文献求助10
7秒前
沉默的婴发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
科目三应助健壮羊青采纳,获得10
7秒前
脸小呆呆发布了新的文献求助10
8秒前
8秒前
哈哈哈哈发布了新的文献求助10
9秒前
只吃7分饱发布了新的文献求助10
9秒前
9秒前
共享精神应助紫菀采纳,获得10
9秒前
9秒前
搜集达人应助yuan采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625765
求助须知:如何正确求助?哪些是违规求助? 4711573
关于积分的说明 14956125
捐赠科研通 4779676
什么是DOI,文献DOI怎么找? 2553867
邀请新用户注册赠送积分活动 1515779
关于科研通互助平台的介绍 1475959