Automated classification and tracking of microscopic holographic patterns of nematodes using machine learning methods

人工智能 计算机科学 全息术 卷积神经网络 跟踪(教育) 计算机视觉 模式识别(心理学) 帧速率 探测器 机器学习 光学 物理 教育学 电信 心理学
作者
Rodrigo P. S. Ribeiro,Antonio Carlos Sobieranski,Elaine Cristina Dalazen Gonçalves,Rafael C. Dutra,Aldo von Wangenheim
出处
期刊:Nematology [Brill]
卷期号:26 (2): 183-201 被引量:2
标识
DOI:10.1163/15685411-bja10301
摘要

Summary Analysing nematode behaviour helps estimate biomechanical parameters for applications like cellular biology, pharmacology and cognitive neuroscience. Portable holographic platforms offer cost-effective, high-resolution, high-frame-rate, wide-field imaging compared to conventional microscopy. Holographic methods can reconstruct original shapes using numerical diffraction, although this is computationally expensive. However, video holography remains challenging due to the fast motion and overlapping of holograms when nematodes swim in crowded environments. In this work we address this problem by focusing on automated detection and tracking of nematodes in densely populated environments, using machine learning methods. The main advantage of our approach is to present an automated computational flow to detect and analyse the behaviour of live nematodes in video directly from the raw holographic signals, without the requirement of phase-recovering methods for diffraction. For this purpose, we developed a three-step CNN-based approach consisting of: i ) nematode hologram detection; ii ) temporal tracking; and iii ) behavioural analysis based on mobility parameters. In terms of precision, the obtained results show that using a two-stage detector, the Faster R-CNN architecture with the ResNet18 model as a backbone, presented the best Mean Average Precision (mAP) score with 86% for correct classification. For tracking, the best performing algorithm was IoU with a HOTA, resulting in 62.42% when applied on the individually tagged nematodes, which is comparable to the best current generic multi-tracking approaches available over the literature. Our obtained results show that the use of a convolutional neural network approach associated with a classic tracking algorithm is a very suitable approach for nematode detection and behavioural analysis for biological assays directly from holograms, even in densely populated environments. The proposed approach has been presented as a promising solution for automated inspection of free-living nematode individuals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助conghuiqu采纳,获得10
1秒前
1秒前
任大发发布了新的文献求助10
1秒前
Qinghen发布了新的文献求助10
1秒前
1秒前
大模型应助jzy采纳,获得10
2秒前
Hello应助科研欢采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
回飞鱼完成签到,获得积分20
3秒前
3秒前
CipherSage应助科研通管家采纳,获得20
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
求助人员发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
4秒前
李健应助Tonald Yang采纳,获得10
5秒前
三角牛完成签到,获得积分10
6秒前
Hello应助知安采纳,获得10
6秒前
豆丁小猫发布了新的文献求助10
6秒前
斯文败类应助求助人员采纳,获得10
7秒前
7秒前
__发布了新的文献求助10
9秒前
搜集达人应助niko采纳,获得10
10秒前
远山完成签到 ,获得积分10
10秒前
qww发布了新的文献求助30
10秒前
11秒前
汉堡包应助苏一的小宝贝采纳,获得10
12秒前
Owen应助Yee采纳,获得10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513281
求助须知:如何正确求助?哪些是违规求助? 4607602
关于积分的说明 14505891
捐赠科研通 4543161
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471343
关于科研通互助平台的介绍 1443372