Personal or General? A Hybrid Strategy with Multi-factors for News Recommendation

计算机科学 偏爱 事件(粒子物理) 情报检索 阅读(过程) 期限(时间) 推荐系统 万维网 物理 量子力学 政治学 法学 经济 微观经济学
作者
Zhenya Huang,Binbin Jin,Hongke Zhao,Qi Liu,Defu Lian,Tengfei Bao,Enhong Chen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:41 (2): 1-29 被引量:2
标识
DOI:10.1145/3555373
摘要

News recommender systems have become an effective manner to help users make decisions by suggesting the potential news that users may click and read, which has shown the proliferation nowadays. Many representative algorithms made great efforts to discover users’ preferences from the histories for triggering news recommendations. However, there exist some limitations due to the following two main issues. First, they mainly rely on the sufficient user data, which cannot well capture users’ temporal interests with very limited records. Second, always perceiving users’ histories for recommendation may ignore some important news (e.g., breaking news). In this article, we propose a novel Multi-factors Fusion model for news recommendation by integrating both user-dependent preference effect and user-independent timeliness effect together. First, to track the preference of a certain user, we decompose her reading history into two user-related factors, including the long-term habit and the short-term interest. Specifically, we extract her persistent habit by exploring the category effect of news that she focuses on from her whole records. Then, we characterize her temporary interests by proposing a recurrent neural network of analyzing the homogeneous relations between her latest clicked news and the candidate ones. Second, to describe the user-independent news timeliness effect, we propose a novel survival analysis model to estimate the instantaneous click probability of a certain news as the occurring probability of an event, where much sensational news tends to be picked out. Last, we fuse all effects to determine the probability of a user clicking on a certain news under the independent event assumption. We conduct extensive experiments on two real-world datasets. Experimental results demonstrate that our model can generate better news recommendations on both general scenario and cold-start scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄金矿工完成签到,获得积分10
刚刚
小管发布了新的文献求助10
1秒前
冷笑完成签到,获得积分10
1秒前
爱上人家四月完成签到,获得积分10
2秒前
guositing完成签到,获得积分10
3秒前
Singularity应助TT采纳,获得20
3秒前
海绵梅关注了科研通微信公众号
4秒前
Owen应助yangshuo采纳,获得10
4秒前
4秒前
4秒前
文丽完成签到 ,获得积分10
4秒前
zuo发布了新的文献求助10
4秒前
4秒前
顾矜应助山阴路没有夏天采纳,获得10
4秒前
今今完成签到,获得积分10
5秒前
6秒前
Lucas应助qqwxp采纳,获得10
7秒前
Hello应助快乐小白采纳,获得10
7秒前
杨向南完成签到 ,获得积分10
7秒前
8秒前
满意白卉发布了新的文献求助10
8秒前
小管完成签到,获得积分20
8秒前
8秒前
9秒前
水果完成签到,获得积分10
9秒前
9秒前
Mine发布了新的文献求助10
10秒前
AAA建材王哥完成签到,获得积分10
10秒前
Dr.完成签到,获得积分10
11秒前
饭后瞌睡完成签到,获得积分10
11秒前
超帅鸭子发布了新的文献求助10
12秒前
彭于晏应助DDda采纳,获得10
12秒前
12秒前
汶溢完成签到,获得积分10
12秒前
12秒前
幸福水儿发布了新的文献求助10
13秒前
jyh完成签到,获得积分10
13秒前
13秒前
SciGPT应助牛马自己push采纳,获得10
13秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805783
求助须知:如何正确求助?哪些是违规求助? 3350709
关于积分的说明 10350220
捐赠科研通 3066573
什么是DOI,文献DOI怎么找? 1683863
邀请新用户注册赠送积分活动 809190
科研通“疑难数据库(出版商)”最低求助积分说明 765407