Multi-Interest Sequential Recommendation with Simplified Graph Convolution and Multiple Item Features

计算机科学 杠杆(统计) 联营 二部图 图形 卷积(计算机科学) 人工智能 特征提取 数据挖掘 机器学习 模式识别(心理学) 理论计算机科学 人工神经网络
作者
Kelei Sun,Mengqi He,Huaping Zhou,Yingying Wang,Sai Sun
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:38 (09)
标识
DOI:10.1142/s0218001424590092
摘要

Multi-interest sequential recommendations leverage users’ historical behavior to provide recommendations that match multiple interests. Most of these methods have not fully extracted higher-order information hidden in users’ interactions and have overlooked the multiple features of items. To this end, this paper proposes a multi-interest model called “multi-interest sequential recommendation with simplified graph convolution and item multi-features (SGCMF)”. Firstly, a simplified graph convolution module is designed based on bipartite graphs, which utilizes mean pooling to aggregate neighboring information and employs a feedforward neural network (FNN) for nonlinear transformations and combinations. This method reduces redundant information and captures higher-order relationships, thereby simplifying the complexity of modeling high-order interactions and improving prediction accuracy. Secondly, an item multi-feature extraction module is proposed, which represents item features with multiple vectors, and analyzes each feature from multiple perspectives while preserving important relationships between features. The model correlates multiple features of the item with user interests, thereby achieving a fine-grained analysis of user interests. Extensive experiments are conducted on five real-world scenarios, and the results are compared with state-of-the-art methods. The experimental results show that SGCMF outperforms other baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YangZai发布了新的文献求助10
刚刚
suiqing完成签到,获得积分10
刚刚
缘君应助xieyan采纳,获得20
1秒前
远方如歌发布了新的文献求助10
1秒前
领导范儿应助KIQING采纳,获得10
1秒前
mercurial发布了新的文献求助10
1秒前
Hello应助马薄函采纳,获得10
1秒前
Lynn完成签到,获得积分10
2秒前
summing发布了新的文献求助10
2秒前
orixero应助幸福的涵阳采纳,获得10
2秒前
2秒前
一言一木发布了新的文献求助10
3秒前
feng发布了新的文献求助10
3秒前
forever发布了新的文献求助10
3秒前
3秒前
3秒前
怡米李完成签到,获得积分10
3秒前
3秒前
暴躁的迎彤完成签到,获得积分10
4秒前
小龙完成签到,获得积分10
4秒前
朴素的书琴完成签到,获得积分10
5秒前
5秒前
6秒前
zhanjl13完成签到,获得积分10
6秒前
wangmeiqiong完成签到,获得积分10
6秒前
6秒前
顾矜应助木子正文采纳,获得10
6秒前
2233完成签到 ,获得积分10
6秒前
HITvagary完成签到,获得积分10
6秒前
包凡之发布了新的文献求助10
6秒前
zz完成签到 ,获得积分10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI6应助调皮初珍采纳,获得10
7秒前
风中冰香应助科研通管家采纳,获得10
7秒前
hans应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
风中冰香应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
charint应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544578
求助须知:如何正确求助?哪些是违规求助? 4630278
关于积分的说明 14615831
捐赠科研通 4571981
什么是DOI,文献DOI怎么找? 2506622
邀请新用户注册赠送积分活动 1483598
关于科研通互助平台的介绍 1455147