Machine learning and metabolomics identify biomarkers associated with the disease extent of ulcerative colitis

溃疡性结肠炎 医学 Lasso(编程语言) 炎症性肠病 机器学习 代谢组学 人工智能 随机森林 OPL公司 支持向量机 疾病 弹性网正则化 特征选择 线性判别分析 接收机工作特性 内科学 胃肠病学 生物信息学 计算机科学 生物 氢键 化学 有机化学 分子 万维网
作者
Changchang Ge,Yi Lü,Zhaofeng Shen,Yizhou Lu,Xiaojuan Liu,Mengyuan Zhang,Yijing Liu,Hong Shen,Lei Zhu
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
被引量:1
标识
DOI:10.1093/ecco-jcc/jjaf020
摘要

Abstract Background and aims Ulcerative colitis (UC) is a metabolism-related chronic intestinal inflammatory disease. Disease extent is a key parameter of UC. Using serum metabolic profiling to identify non-invasive biomarkers of disease extent may inform therapeutic decisions and risk stratification. Methods The orthogonal partial least squares–discriminant analysis (OPLS-DA) was performed to identify the metabolites. Least absolute shrinkage and selection operator (LASSO) regression, random forest–recursive feature elimination (RF-RFE), and support vector machine–recursive feature elimination (SVM-RFE) algorithms were used to screen metabolites. Five machine learning algorithms (XGboost, KNN, NB, RF, and SVM) were used to construct prediction model. Results A total of 220 differential metabolites between the patients with UC and healthy controls (HCs) were confirmed by the OPLS-DA model. Machine learning screened eight essential metabolites for distinguishing patients with UC from HCs. A total of 23, 6, and 6 differential metabolites were obtained through machine learning between group E1 and E2, E1 and E3, and E2 and E3. The RF model had a prediction accuracy of up to 100% in all three training sets. The serum levels of tridecanoic acid were significantly lower and pelargonic acid were significantly higher in patients with extensive colitis than in the other groups. The serum level of asparaginyl valine in patients with rectal UC was significantly lower than that in E2 and E3 groups. Conclusions Our findings revealed the metabolic landscape of UC and identified biomarkers for different disease extents, confirming the value of metabolites in predicting the occurrence and progression of UC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助研友_zndy9Z采纳,获得10
2秒前
沉默的八宝粥完成签到 ,获得积分10
3秒前
3秒前
tyZhang完成签到,获得积分10
4秒前
5秒前
小可爱发布了新的文献求助10
5秒前
si发布了新的文献求助10
5秒前
6秒前
6秒前
理想三寻完成签到,获得积分10
7秒前
个木完成签到,获得积分20
7秒前
9秒前
有魅力的臻完成签到,获得积分10
9秒前
9秒前
dominate完成签到,获得积分10
9秒前
AURORA发布了新的文献求助10
10秒前
11秒前
aliu发布了新的文献求助10
12秒前
专注流沙发布了新的文献求助10
13秒前
si完成签到,获得积分10
14秒前
16秒前
17秒前
LJ完成签到,获得积分10
17秒前
爆米花应助专注流沙采纳,获得10
17秒前
mbxjsy发布了新的文献求助10
20秒前
20秒前
认真夜云发布了新的文献求助30
21秒前
22秒前
饿了呼啦啦完成签到 ,获得积分10
22秒前
24秒前
25秒前
shy发布了新的文献求助10
25秒前
一一应助nusiew采纳,获得10
25秒前
丑123发布了新的文献求助10
27秒前
28秒前
28秒前
Ice完成签到 ,获得积分10
28秒前
缓慢思枫发布了新的文献求助10
29秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997