作者
Byeong Min Ahn,Yuran Noh,Justin Jaesuk Lee,Jung Han Yoon Park,Ki Won Lee,Young Jin Jang
摘要
Sarcopenia, caused by aging, is characterized by the reduction of muscle mass and function. In this study, we investigated the effects of soyasapogenol B on skeletal muscle and the underlying mechanisms to determine its potential as a prevention for sarcopenia. Soyasapogenol B, a natural triterpenoid found in soybeans, has biological effects that inhibit cancer, inflammation, and obesity; however, its effects on skeletal muscle remain unclear and require further investigation. C57/BL6 mice were fed soyasapogenol B for 8 weeks, after which skeletal muscle mass, function, and protein analysis for muscle synthesis and exercise mimetics were evaluated. The mechanism of skeletal muscle improvement by soyasapogenol B was identified through in vitro experiments. Soyasapogenol B increased the weight of the quadriceps and gastrocnemius muscles, grip strength, and running endurance. It also enhanced oxidative muscle fiber switching, mitochondrial enzyme complex, and mitochondria biogenesis through the Sirt1/PGC-1α pathway. Soyasapogenol B increased myogenic differentiation and protein synthesis, through the PI3K pathway. The upregulation of mitochondrial biogenesis and myogenic differentiation by soyasapogenol B was attenuated by treatment with EX-527, a SIRT1 inhibitor, and LY294002, a PI3K inhibitor. Molecular docking analyses showed that soyasapogenol B has the potential to directly bind to Sirt1. In conclusion, soyasapogenol B increased skeletal muscle mass, skeletal muscle strength and endurance by activating the Sirt1 and PI3K pathways. Thus, by promoting protein synthesis and mitochondrial biogenesis, soyasapogenol B could be a potential prevention option for sarcopenia.