Microenvironmental variability differently predicts microorganism‐ and fauna‐driven litter decomposition

微生物 生态学 垃圾箱 动物群 分解 环境科学 生物 植物凋落物 生态系统 细菌 遗传学
作者
Pan Yin,Kaiyan Zhai,Xuechao Zhao,Renshan Li,María José Fernández‐Alonso,Jiao Wang,Huixia Yang,Yuxin Hu,Björn Berg,Silong Wang,Weidong Zhang,François‐Xavier Joly
出处
期刊:Journal of Ecology [Wiley]
标识
DOI:10.1111/1365-2745.70141
摘要

Abstract Plant litter decomposition is a key process for ecosystem carbon and nutrient cycling. Growing evidence suggests that substantial variation in litter decomposition occurs at a fine scale, but the contributions of microorganism‐ and fauna‐driven decomposition to this variation, and the relative control of biotic and abiotic drivers over this variation remain virtually unexplored. To address this knowledge gap, we used a spatially explicit network of 113 evenly spread plots in a 9‐ha subtropical coniferous forest to evaluate the variation and controls of microorganism‐ and fauna‐driven decomposition at a scale where macroclimate, dominant vegetation and litter quality are kept constant. Despite keeping dominant decomposition drivers constant, the variation in decomposition was larger than that commonly reported in regional studies and amounted to ca. a third of the variation previously reported at a global scale. Furthermore, whilst abiotic factors including topographic conditions and soil fertility could explain 31% of the variation in microorganism‐driven decomposition, they could not explain any variation in the fauna‐driven decomposition, suggesting contrasting sensitivities of microorganism‐ and fauna‐driven decomposition activity to microenvironmental factors. Synthesis . Our study highlights the need to consider the local‐scale variation in litter decomposition rate using a spatially explicit approach, in order to better identify the factors driving the microbial and faunal pathways of organic matter turnover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jun发布了新的文献求助10
刚刚
务实梦松发布了新的文献求助10
1秒前
克林完成签到,获得积分10
1秒前
lucky发布了新的文献求助10
2秒前
3秒前
Roy发布了新的文献求助10
4秒前
英俊的铭应助liujie666采纳,获得10
4秒前
火焰迷踪完成签到,获得积分10
4秒前
5秒前
大模型应助一万瓶啤酒采纳,获得10
7秒前
8秒前
小马甲应助jin采纳,获得20
8秒前
9秒前
yu202408应助JJ采纳,获得10
10秒前
JamesPei应助黄淳采纳,获得10
10秒前
11秒前
打打应助科研丁真采纳,获得10
12秒前
lrz发布了新的文献求助30
12秒前
jun完成签到,获得积分10
12秒前
13秒前
14秒前
闪闪落雁发布了新的文献求助10
15秒前
asd发布了新的文献求助10
16秒前
18秒前
Len发布了新的文献求助30
18秒前
18秒前
周少完成签到,获得积分10
18秒前
Li YY发布了新的文献求助10
19秒前
20秒前
20秒前
小蘑菇应助KX采纳,获得10
21秒前
21秒前
22秒前
Ally完成签到,获得积分20
22秒前
小蘑菇应助cheng采纳,获得10
22秒前
wanci应助Chenjunxian采纳,获得10
22秒前
宇文宛菡完成签到 ,获得积分0
23秒前
含蓄的敏发布了新的文献求助10
23秒前
zxping发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300188
求助须知:如何正确求助?哪些是违规求助? 4448119
关于积分的说明 13844972
捐赠科研通 4333773
什么是DOI,文献DOI怎么找? 2379109
邀请新用户注册赠送积分活动 1374221
关于科研通互助平台的介绍 1339946