Development of machine learning methods for mechanical problems associated with fibre composite materials: A review

复合数 复合材料 材料科学
作者
Mengzhen Liu,Haotian Li,Hongyuan Zhou,Hong Zhang,Guangyan Huang
出处
期刊:Composites Communications [Elsevier BV]
卷期号:49: 101988-101988 被引量:6
标识
DOI:10.1016/j.coco.2024.101988
摘要

Fibre composite materials (FCMs) are widely used in the aerospace, military defence, and engineering manufacturing industries due to their high strength and high modulus. Understanding the constitutive laws, defect detection, impact dynamic response, tribological behaviour and fatigue failure of FCMs is essential in these industries because the mechanical behavior of FCMs is often influenced by various factors, including fiber arrangement and matrix properties. Due to the anisotropic and heterogeneous nature of FCMs, research on their mechanical properties often relies on costly experiments with poor reproducibility and computationally intensive simulations. In contrast, machine learning (ML) methods can rapidly uncover data relationships and are highly reproducible. Moreover, modern FCM manufacturing and testing techniques have generated large amounts of data. This article not only provides a comprehensive analysis of the application of ML methods but also emphasizes the applicability and future trends of different ML approaches in FCMs. In constitutive model building, deep neural network models can consider the subtle connections between multiple parameters, thereby revealing deeper relationships among the data. In defect detection and impact dynamics problems, convolutional neural network models can effectively extract information related to mechanical performance from images. This paper provides inspiration for the application of ML methods to solve mechanical problems and guide the optimal design of FCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗天寿发布了新的文献求助10
1秒前
小眼儿完成签到 ,获得积分10
1秒前
科研通AI2S应助安晗默采纳,获得10
2秒前
Leo_Sun完成签到,获得积分10
3秒前
Yang完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
完美世界应助自强不息采纳,获得10
4秒前
品品完成签到 ,获得积分10
4秒前
完美世界应助ZM采纳,获得10
4秒前
5秒前
QL发布了新的文献求助20
5秒前
执着易绿完成签到 ,获得积分10
5秒前
NexusExplorer应助huiliang采纳,获得10
7秒前
8秒前
ss发布了新的文献求助10
9秒前
9秒前
yuyu完成签到,获得积分10
10秒前
果果瑞宁发布了新的文献求助10
10秒前
脑洞疼应助思无邪采纳,获得10
10秒前
bkagyin应助兴奋小丸子采纳,获得10
11秒前
阔达语儿完成签到,获得积分10
11秒前
13秒前
啦啦啦发布了新的文献求助10
13秒前
今后应助yuyu采纳,获得10
14秒前
脑洞疼应助彳亍而行采纳,获得10
14秒前
李爱国应助blueming采纳,获得10
14秒前
科目三应助猪猪hero采纳,获得30
14秒前
15秒前
星辰大海应助祥子采纳,获得10
15秒前
zhangjiabin完成签到,获得积分10
15秒前
16秒前
赫连涵柏完成签到,获得积分0
18秒前
19秒前
19秒前
自强不息发布了新的文献求助10
20秒前
20秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409