Tensor Train Decomposition for Data-Driven Prognosis of Fracture Dynamics in Composite Materials

有限元法 计算机科学 奇异值分解 张量(固有定义) 断裂力学 伽辽金法 矢量化(数学) 代表(政治) 断裂(地质) 张量积 算法 应用数学 结构工程 数学 几何学 材料科学 工程类 政治 复合材料 并行计算 政治学 法学 纯数学
作者
Pham Luu Trung Duong,Nagarajan Raghavan,Shaista Hussain,Mark Hyunpong Jhon
标识
DOI:10.1109/aero47225.2020.9172575
摘要

It is important to be able to accurately predict the evolution of damage in structural components to evaluate the mechanical reliability of engineering structures. This requires modeling complex mechanisms in damage including crack nucleation and propagation. These pose significant computational challenges to simulation, specifically the singular crack tip field as well as the moving boundary problem inherent in crack propagation. In order to address these problems, many different approaches in computational mechanics have been developed including the cohesive zone method, the extended finite element method and the phase-field method, although all these methods are still relatively expensive in computational effort. In order to reduce the computational burden, reduced order models based on the proper orthogonal decomposition (POD) approach can be used to exploit the spatial correlation to get a set of modes characterizing the spatial structure of the model. For the multidimensional problem, there is a need for vectorization of the solution for derivation of the POD modes. This leads to difficulty in explanation of the model. Tensor train (TT) or matrix product states is a better representation of the multidimensional solution using the product of three-dimensional tensors. In this work, the TT methodology is proposed for modeling and predicting the dynamics of fracture in composite materials. We consider a rectangular slab with a pre-existing line crack subject to Mode-I loading condition. Uniaxial strains are applied to the top and bottom edges of the slab. The phase-field method (PFM) with finite-difference (FD) is used for generating the high dimensional data for training the TT method. The predictions using the TT method are then compared with the results from the finite difference method with phase-field to verify the correctness of the TT. Our results show that the TT can predict the crack growth trends based on the finite difference method with an accuracy of 95-98% while reducing the computational load by up to 2–5 orders of magnitude.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夜雪完成签到,获得积分10
1秒前
小马甲应助0美团外卖0采纳,获得10
2秒前
自然乘云完成签到,获得积分20
2秒前
2秒前
theseus完成签到,获得积分10
3秒前
充电宝应助优秀绮彤采纳,获得10
5秒前
gis发布了新的文献求助10
5秒前
5秒前
852应助拒绝焦虑采纳,获得10
5秒前
5秒前
含笑打针发布了新的文献求助10
6秒前
英俊的铭应助缓慢的蜗牛采纳,获得10
6秒前
自然乘云发布了新的文献求助10
6秒前
lango发布了新的文献求助10
8秒前
8秒前
8秒前
Sara完成签到 ,获得积分10
9秒前
10秒前
慈祥的孤兰完成签到,获得积分10
10秒前
ding应助明亮迎丝采纳,获得10
10秒前
无花果应助柠檬泡芙采纳,获得10
10秒前
10秒前
鹏鱼燕完成签到,获得积分10
10秒前
Hello应助爱死看文献啦采纳,获得10
10秒前
叶财财发布了新的文献求助10
11秒前
传统的尔丝完成签到,获得积分10
12秒前
wangsy发布了新的文献求助10
12秒前
无聊的天空完成签到,获得积分10
13秒前
13秒前
无敌牛奶发布了新的文献求助10
13秒前
细心妙菡发布了新的文献求助30
14秒前
戒骄戒躁发布了新的文献求助10
15秒前
热情依白完成签到 ,获得积分10
15秒前
15秒前
鲤鱼鸽子应助lisier采纳,获得10
16秒前
英姑应助陶醉的夜绿采纳,获得30
16秒前
上官若男应助叶财财采纳,获得10
17秒前
17秒前
uniphoton发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 350
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3929487
求助须知:如何正确求助?哪些是违规求助? 3474503
关于积分的说明 10982545
捐赠科研通 3204600
什么是DOI,文献DOI怎么找? 1770703
邀请新用户注册赠送积分活动 858755
科研通“疑难数据库(出版商)”最低求助积分说明 796738