Long range early diagnosis of Alzheimer's disease using longitudinal MR imaging data

神经影像学 人工智能 磁共振成像 支持向量机 计算机科学 阿尔茨海默病 医学 机器学习 疾病 模式识别(心理学) 神经科学 心理学 放射科 病理
作者
Yingying Zhu,Minjeong Kim,Xiaofeng Zhu,Daniel Kaufer,Guo‐Rong Wu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:67: 101825-101825 被引量:41
标识
DOI:10.1016/j.media.2020.101825
摘要

The enormous social and economic cost of Alzheimer's disease (AD) has driven a number of neuroimaging investigations for early detection and diagnosis. Towards this end, various computational approaches have been applied to longitudinal imaging data in subjects with Mild Cognitive Impairment (MCI), as serial brain imaging could increase sensitivity for detecting changes from baseline, and potentially serve as a diagnostic biomarker for AD. However, current state-of-the-art brain imaging diagnostic methods have limited utility in clinical practice due to the lack of robust predictive power. To address this limitation, we propose a flexible spatial-temporal solution to predict the risk of MCI conversion to AD prior to the onset of clinical symptoms by sequentially recognizing abnormal structural changes from longitudinal magnetic resonance (MR) image sequences. Firstly, our model is trained to sequentially recognize different length partial MR image sequences from different stages of AD. Secondly, our method is leveraged by the inexorably progressive nature of AD. To that end, a Temporally Structured Support Vector Machine (TS-SVM) model is proposed to constrain the partial MR image sequence's detection score to increase monotonically with AD progression. Furthermore, in order to select the best morphological features for enabling classifiers, we propose a joint feature selection and classification framework. We demonstrate that our early diagnosis method using only two follow-up MR scans is able to predict conversion to AD 12 months ahead of an AD clinical diagnosis with 81.75% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕容松发布了新的文献求助10
刚刚
感动的白梅完成签到,获得积分10
1秒前
范范完成签到,获得积分10
1秒前
2秒前
恬恬完成签到,获得积分10
2秒前
aaaa完成签到,获得积分10
3秒前
吱吱熊sama完成签到,获得积分10
3秒前
花花发布了新的文献求助10
3秒前
Rocsoar发布了新的文献求助10
3秒前
3秒前
黎小乐子完成签到,获得积分10
3秒前
bellapp完成签到 ,获得积分10
4秒前
叮当完成签到,获得积分10
4秒前
6秒前
miawei完成签到,获得积分10
6秒前
6秒前
大模型应助aaa采纳,获得10
6秒前
痞老板发布了新的文献求助10
7秒前
狂野的河马完成签到,获得积分10
7秒前
勤奋的松鼠完成签到,获得积分10
8秒前
王晓蕾发布了新的文献求助10
8秒前
猫好好完成签到,获得积分10
8秒前
bkagyin应助103921wjk采纳,获得10
9秒前
JJy完成签到 ,获得积分10
9秒前
mof发布了新的文献求助10
9秒前
陌落完成签到,获得积分20
9秒前
慕容松完成签到,获得积分10
9秒前
背后的鹭洋完成签到,获得积分10
9秒前
LI电池发布了新的文献求助10
10秒前
淡淡的发卡完成签到,获得积分10
10秒前
kobe发布了新的文献求助10
11秒前
11秒前
暗黑同学完成签到,获得积分10
12秒前
小凉完成签到,获得积分10
12秒前
12秒前
12秒前
火星上冬亦完成签到,获得积分10
12秒前
13秒前
13秒前
乐意李完成签到,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838008
求助须知:如何正确求助?哪些是违规求助? 3380253
关于积分的说明 10513110
捐赠科研通 3099862
什么是DOI,文献DOI怎么找? 1707244
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772744