自噬
白色念珠菌
吞噬作用
THP1细胞系
白色体
微生物学
生物
先天免疫系统
ULK1
程序性细胞死亡
细胞生物学
免疫系统
细胞凋亡
细胞培养
免疫学
生物化学
激酶
蛋白激酶A
遗传学
安普克
作者
Li Ding,Lin Wang,Zhimiao Zhao,Changsen Bai,Xichuan Li
标识
DOI:10.1016/j.imlet.2023.09.006
摘要
In innate immunity, macrophages play critical roles in defending against pathogens via the lysosomal degradation function of autophagy. Two distinct autophagy pathways have been identified in decades: canonical autophagy (referred to as autophagy) and LC3-associated phagocytosis (LAP). Since several conflicting findings about the anti-Candida capability of autophagy (or LAP) have been reported, they serve as the foe or friend for Candida survival is still unclearly. The current study showed that the fungicidal process of THP-1-derived macrophages (THP-1-MФ) against Candida albicans is divided into three stages as follows, the early stage (the first 12 h, increasing in the killing capability), the mid-stage (12-24 h, no change in killing capability), and the late stage (24-48 h, decreasing of the killing capability). Autophagic protein LC3B-II reached the peak in THP-1-MФ after 24 h inoculated either with C.albicans or whole glucan particles (WGP). Thus, both anti-Candida roles of autophagy and the LAP pathway have been detected at the mid-stage. For autophagy, after 24 h inoculation with C.albicans, ULK1 increased, but p-ATG13(s318) decreased obviously in THP-1-MФ, and the killing assay showed that autophagy is unhelpful for Candida killing capability. For the LAP pathway, Rubicon and ROS raised significantly in THP-1-MФ after 24 h inoculated with C.albicans; each inhibition would sharply cut down the LC3B-II accumulation, which indicated that LAP had been induced. However, mCherry-GFP-LC3 fluorescent assay exhibited that LAP phago-lysosomal fusion has been blocked, and Rubicon knockdown facilitated the Candida killing activity. These data indicated that autophagy presented as redundant to Candida defense, and LAP phago-lysosomal fusion obstruction impairs the Candida killing capability of THP-1-MФ at the mid-stage. That may explain the no change in Candida killing capability at the mid-stage.
科研通智能强力驱动
Strongly Powered by AbleSci AI