清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures

变压器 计算机科学 风速 人工智能 数据挖掘 工程类 气象学 地理 电气工程 电压
作者
Lars Ødegaard Bentsen,Narada Dilp Warakagoda,Roy Stenbro,Paal Engelstad
出处
期刊:Applied Energy [Elsevier]
卷期号:333: 120565-120565 被引量:150
标识
DOI:10.1016/j.apenergy.2022.120565
摘要

To improve the security and reliability of wind energy production, short-term forecasting has become of utmost importance. This study focuses on multi-step spatio-temporal wind speed forecasting for the Norwegian continental shelf. In particular, the study considers 14 offshore measurement stations and aims to leverage spatial dependencies through the relative physical location of different stations to improve local wind forecasts and simultaneously output different forecasts for each of the 14 locations. Our multi-step forecasting models produce either 10-minute, 1- or 4-hour forecasts, with 10-minute resolution, meaning that the models produce more informative time series for predicted future trends. A graph neural network (GNN) architecture was used to extract spatial dependencies, with different update functions to learn temporal correlations. These update functions were implemented using different neural network architectures. One such architecture, the Transformer, has become increasingly popular for sequence modelling in recent years. Various alterations have been proposed to better facilitate time series forecasting, of which this study focused on the Informer, LogSparse Transformer and Autoformer. This is the first time the LogSparse Transformer and Autoformer have been applied to wind forecasting and the first time any of these or the Informer have been formulated in a spatio-temporal setting for wind forecasting. By comparing against spatio-temporal Long Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP) models, the study showed that the models using the altered Transformer architectures as update functions in GNNs were able to outperform these. Furthermore, we propose the Fast Fourier Transformer (FFTransformer), which is a novel Transformer architecture based on signal decomposition and consists of two separate streams that analyse the trend and periodic components separately. The FFTransformer and Autoformer were found to achieve superior results for the 10-minute and 1-hour ahead forecasts, with the FFTransformer significantly outperforming all other models for the 4-hour ahead forecasts. Our code to implement the different models are made publicly available at: https://github.com/LarsBentsen/FFTransformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
久晓完成签到 ,获得积分10
25秒前
大医仁心完成签到 ,获得积分10
42秒前
ZYP完成签到,获得积分0
50秒前
ZYP发布了新的文献求助10
1分钟前
1分钟前
doublenine18发布了新的文献求助30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
外向的妍完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
3分钟前
swh发布了新的文献求助10
3分钟前
3分钟前
4分钟前
ZYP发布了新的文献求助10
4分钟前
隐形曼青应助结实的半双采纳,获得10
4分钟前
4分钟前
Johan完成签到 ,获得积分10
4分钟前
4分钟前
kingsley05发布了新的文献求助10
4分钟前
5分钟前
5分钟前
鲁卓林完成签到,获得积分10
5分钟前
汉堡包应助蓝天下载采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
许三问完成签到 ,获得积分0
6分钟前
6分钟前
6分钟前
木南完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639779
求助须知:如何正确求助?哪些是违规求助? 4750432
关于积分的说明 15007332
捐赠科研通 4797998
什么是DOI,文献DOI怎么找? 2564082
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482609