Machine Learning-Aided Identification of Fecal Extracellular Vesicle microRNA Signatures for Noninvasive Detection of Colorectal Cancer

结直肠癌 鉴定(生物学) 细胞外小泡 小RNA 胞外囊泡 粪便 癌症检测 计算生物学 生物 癌症 计算机科学 人工智能 医学 内科学 细胞生物学 微泡 基因 生物化学 微生物学 植物
作者
Zhaowei Zhang,Xuyang Liu,Chuzhi Peng,Rui Du,Xiaoqin Hong,Jia Xu,Jiaming Chen,Xiaomin Li,Yujing Tang,Yuwei Li,Yang Liu,Chen Xu,Dingbin Liu
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c16698
摘要

Colorectal cancer (CRC) remains a formidable threat to human health, with considerable challenges persisting in its diagnosis, particularly during the early stages of the malignancy. In this study, we elucidated that fecal extracellular vesicle microRNA signatures (FEVOR) could serve as potent noninvasive CRC biomarkers. FEVOR was first revealed by miRNA sequencing, followed by the construction of a CRISPR/Cas13a-based detection platform to interrogate FEVOR expression across a diverse spectrum of clinical cohorts. Machine learning-driven models were subsequently developed within the realms of CRC diagnostics, prognostics, and early warning systems. In a cohort of 38 CRC patients, our diagnostic model achieved an outstanding accuracy of 97.4% (37/38), successfully identifying 37 of 38 CRC cases. This performance significantly outpaced the diagnostic efficacy of two clinically established biomarkers, CEA and CA19-9, which showed accuracies of mere 26.3% (10/38) and 7.9% (3/38), respectively. We also examined the expression levels of FEVOR in several CRC patients both before and after surgery, as well as in patients with colorectal adenomas (CA). Impressively, the results showed that FEVOR could serve as a robust prognostic indicator for CRC and a potential predictor for CA. This endeavor aimed to harness the predictive power of FEVOR for enhancing the precision and efficacy of CRC management paradigms. We envision that these findings will propel both foundational and preclinical research on CRC, as well as clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vegetable完成签到,获得积分10
刚刚
刚刚
念初完成签到 ,获得积分10
1秒前
mariawang发布了新的文献求助10
5秒前
是多多呀完成签到 ,获得积分10
6秒前
小菜在努力了完成签到,获得积分10
9秒前
隐形曼青应助zz采纳,获得10
11秒前
11秒前
CipherSage应助chocho采纳,获得10
13秒前
雨中客完成签到,获得积分10
16秒前
天天快乐应助mariawang采纳,获得10
17秒前
17秒前
17秒前
123发布了新的文献求助10
18秒前
18秒前
Q0完成签到,获得积分10
22秒前
科研通AI5应助大坚果采纳,获得10
26秒前
FashionBoy应助zxxx采纳,获得10
28秒前
34秒前
一只小羊发布了新的文献求助10
36秒前
iko完成签到,获得积分10
39秒前
科研通AI5应助123采纳,获得10
40秒前
大坚果发布了新的文献求助10
40秒前
40秒前
加菲丰丰应助yangmiemie采纳,获得10
41秒前
48秒前
南宫书瑶完成签到,获得积分10
50秒前
共享精神应助一只小羊采纳,获得10
50秒前
Umar发布了新的文献求助10
55秒前
123完成签到,获得积分10
55秒前
chocho完成签到,获得积分20
56秒前
1分钟前
霜月十四完成签到,获得积分10
1分钟前
1分钟前
娜笔小熊完成签到,获得积分10
1分钟前
zzzzzz发布了新的文献求助10
1分钟前
Felix完成签到 ,获得积分10
1分钟前
1分钟前
儒雅的焦完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893