Machine Learning-Aided Identification of Fecal Extracellular Vesicle microRNA Signatures for Noninvasive Detection of Colorectal Cancer

结直肠癌 鉴定(生物学) 细胞外小泡 小RNA 胞外囊泡 粪便 癌症检测 计算生物学 生物 癌症 计算机科学 人工智能 医学 内科学 细胞生物学 微泡 基因 生物化学 微生物学 植物
作者
Zhaowei Zhang,Xuyang Liu,Chuzhi Peng,Rui Du,Xiaoqin Hong,Jia Xu,Jiaming Chen,Xiaomin Li,Yujing Tang,Yuwei Li,Yang Liu,Chen Xu,Dingbin Liu
出处
期刊:ACS Nano [American Chemical Society]
被引量:7
标识
DOI:10.1021/acsnano.4c16698
摘要

Colorectal cancer (CRC) remains a formidable threat to human health, with considerable challenges persisting in its diagnosis, particularly during the early stages of the malignancy. In this study, we elucidated that fecal extracellular vesicle microRNA signatures (FEVOR) could serve as potent noninvasive CRC biomarkers. FEVOR was first revealed by miRNA sequencing, followed by the construction of a CRISPR/Cas13a-based detection platform to interrogate FEVOR expression across a diverse spectrum of clinical cohorts. Machine learning-driven models were subsequently developed within the realms of CRC diagnostics, prognostics, and early warning systems. In a cohort of 38 CRC patients, our diagnostic model achieved an outstanding accuracy of 97.4% (37/38), successfully identifying 37 of 38 CRC cases. This performance significantly outpaced the diagnostic efficacy of two clinically established biomarkers, CEA and CA19-9, which showed accuracies of mere 26.3% (10/38) and 7.9% (3/38), respectively. We also examined the expression levels of FEVOR in several CRC patients both before and after surgery, as well as in patients with colorectal adenomas (CA). Impressively, the results showed that FEVOR could serve as a robust prognostic indicator for CRC and a potential predictor for CA. This endeavor aimed to harness the predictive power of FEVOR for enhancing the precision and efficacy of CRC management paradigms. We envision that these findings will propel both foundational and preclinical research on CRC, as well as clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助廿柒采纳,获得10
1秒前
北冥鱼发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
3秒前
ding应助雪糕采纳,获得10
3秒前
4秒前
5秒前
兜有米发布了新的文献求助10
5秒前
lywswxn发布了新的文献求助10
8秒前
丰知然应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
丰知然应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
momo应助科研通管家采纳,获得10
8秒前
北冥鱼发布了新的文献求助10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
WJX完成签到,获得积分20
9秒前
故意的山河完成签到,获得积分10
9秒前
科研通AI5应助scholar丨崔采纳,获得10
10秒前
11秒前
哈哈完成签到,获得积分10
12秒前
13秒前
白首完成签到,获得积分10
13秒前
15秒前
无花果应助Suniex采纳,获得10
15秒前
jidou1011发布了新的文献求助10
15秒前
15秒前
17秒前
汉堡包应助哈哈采纳,获得10
17秒前
FashionBoy应助yyyyyyt采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883328
求助须知:如何正确求助?哪些是违规求助? 4168897
关于积分的说明 12935533
捐赠科研通 3929248
什么是DOI,文献DOI怎么找? 2155967
邀请新用户注册赠送积分活动 1174364
关于科研通互助平台的介绍 1079108