嵌入
特征(语言学)
模式识别(心理学)
图像(数学)
计算
k-最近邻算法
代表(政治)
人工智能
计算复杂性理论
计算机科学
特征向量
分辨率(逻辑)
图像分辨率
算法
数学
哲学
语言学
政治
政治学
法学
作者
Marco Bevilacqua,Aline Roumy,Christine Guillemot,Marie-Line Alberi Morel
摘要
This paper describes a single-image super-resolution (SR) algorithm based on nonnegative neighbor embedding.It belongs to the family of single-image example-based SR algorithms, since it uses a dictionary of low resolution (LR) and high resolution (HR) trained patch pairs to infer the unknown HR details.Each LR feature vector in the input image is expressed as the weighted combination of its K nearest neighbors in the dictionary; the corresponding HR feature vector is reconstructed under the assumption that the local LR embedding is preserved.Three key aspects are introduced in order to build a low-complexity competitive algorithm: (i) a compact but efficient representation of the patches (feature representation) (ii) an accurate estimation of the patches by their nearest neighbors (weight computation) (iii) a compact and already built (therefore external) dictionary, which allows a one-step upscaling.The neighbor embedding SR algorithm so designed is shown to give good visual results, comparable to other state-of-the-art methods, while presenting an appreciable reduction of the computational time.
科研通智能强力驱动
Strongly Powered by AbleSci AI