Robust and efficient abdominal CT segmentation using shape constrained multi-scale attention network

分割 人工智能 计算机科学 稳健性(进化) 掷骰子 尺度空间分割 图像分割 Sørensen–骰子系数 计算机视觉 深度学习 模式识别(心理学) 数学 统计 生物化学 化学 基因
作者
Nuo Tong,Yinan Xu,Jinsong Zhang,Shuiping Gou,Mengbin Li
出处
期刊:Physica Medica [Elsevier BV]
卷期号:110: 102595-102595 被引量:4
标识
DOI:10.1016/j.ejmp.2023.102595
摘要

Purpose Although many deep learning-based abdominal multi-organ segmentation networks have been proposed, the various intensity distributions and organ shapes of the CT images from multi-center, multi-phase with various diseases introduce new challenges for robust abdominal CT segmentation. To achieve robust and efficient abdominal multi-organ segmentation, a new two-stage method is presented in this study. Methods A binary segmentation network is used for coarse localization, followed by a multi-scale attention network for the fine segmentation of liver, kidney, spleen, and pancreas. To constrain the organ shapes produced by the fine segmentation network, an additional network is pre-trained to learn the shape features of the organs with serious diseases and then employed to constrain the training of the fine segmentation network. Results The performance of the presented segmentation method was extensively evaluated on the multi-center data set from the Fast and Low GPU Memory Abdominal oRgan sEgmentation (FLARE) challenge, which was held in conjunction with International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2021. Dice Similarity Coefficient (DSC) and Normalized Surface Dice (NSD) were calculated to quantitatively evaluate the segmentation accuracy and efficiency. An average DSC and NSD of 83.7% and 64.4% were achieved, and our method finally won the second place among more than 90 participating teams. Conclusions The evaluation results on the public challenge demonstrate that our method shows promising performance in robustness and efficiency, which may promote the clinical application of the automatic abdominal multi-organ segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
pcr163应助科研通管家采纳,获得50
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得30
1秒前
打打应助科研通管家采纳,获得10
1秒前
刘汐完成签到,获得积分10
3秒前
方园完成签到,获得积分10
4秒前
香蕉觅云应助刘家小姐姐采纳,获得10
4秒前
5秒前
6秒前
研友_VZG54L完成签到,获得积分10
7秒前
找不到文献完成签到,获得积分20
8秒前
9秒前
Holland完成签到,获得积分10
9秒前
陈秀娟发布了新的文献求助10
10秒前
11秒前
13秒前
14秒前
14秒前
14秒前
14秒前
xiuxiu发布了新的文献求助30
16秒前
17秒前
一帆风顺发布了新的文献求助10
18秒前
19秒前
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846334
求助须知:如何正确求助?哪些是违规求助? 3388705
关于积分的说明 10554009
捐赠科研通 3109206
什么是DOI,文献DOI怎么找? 1713482
邀请新用户注册赠送积分活动 824744
科研通“疑难数据库(出版商)”最低求助积分说明 775050