Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

Softmax函数 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 特征(语言学) 胡椒粉 计算机安全 语言学 哲学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:357: 114417-114417 被引量:11
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
块块完成签到,获得积分10
1秒前
是小王ya发布了新的文献求助10
2秒前
3秒前
4秒前
IcelikeNOZOMI发布了新的文献求助10
5秒前
6秒前
6秒前
假如明天消失完成签到,获得积分10
6秒前
学术通zzz发布了新的文献求助30
7秒前
研友_VZG7GZ应助yema采纳,获得10
8秒前
ru发布了新的文献求助10
8秒前
neilphilosci完成签到 ,获得积分10
9秒前
杨子怡完成签到 ,获得积分10
9秒前
10秒前
Chloe发布了新的文献求助10
11秒前
小二郎应助书生采纳,获得10
11秒前
一只A茂完成签到 ,获得积分20
12秒前
华仔应助糊涂的炳采纳,获得10
12秒前
lwg发布了新的文献求助10
15秒前
dd36完成签到,获得积分10
15秒前
16秒前
16秒前
无花果应助哄哄采纳,获得10
18秒前
迷你的蓝完成签到 ,获得积分10
19秒前
19秒前
科研通AI5应助sochiyuen采纳,获得10
20秒前
从容芮应助tasaf采纳,获得200
20秒前
rigou667完成签到,获得积分10
20秒前
书剑飞侠完成签到,获得积分10
21秒前
冷酷酸奶发布了新的文献求助10
22秒前
煜晟完成签到 ,获得积分10
23秒前
世外完成签到,获得积分10
24秒前
CodeCraft应助silong采纳,获得10
24秒前
24秒前
znlion发布了新的文献求助10
24秒前
若雨凌风应助羌活采纳,获得20
26秒前
cathy-w完成签到,获得积分10
26秒前
wmn发布了新的文献求助10
27秒前
Unlung完成签到 ,获得积分10
28秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
【求助文献,并非书籍】Perovskite solar cells 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837121
求助须知:如何正确求助?哪些是违规求助? 3379323
关于积分的说明 10508579
捐赠科研通 3099052
什么是DOI,文献DOI怎么找? 1706758
邀请新用户注册赠送积分活动 821261
科研通“疑难数据库(出版商)”最低求助积分说明 772487