A deep multi-agent reinforcement learning framework for autonomous aerial navigation to grasping points on loads

强化学习 计算机科学 人工智能 杠杆(统计) 弹道 机器人 规划师 可扩展性 点(几何) 深度学习 模拟 数学 天文 物理 数据库 几何学
作者
Jingyu Chen,Ruidong Ma,John Oyekan
出处
期刊:Robotics and Autonomous Systems [Elsevier]
卷期号:167: 104489-104489 被引量:14
标识
DOI:10.1016/j.robot.2023.104489
摘要

Deep reinforcement learning, by taking advantage of neural networks, has made great strides in the continuous control of robots. However, in scenarios where multiple robots are required to collaborate with each other to accomplish a task, it is still challenging to build an efficient and scalable multi-agent control system due to increasing complexity. In this paper, we regard each unmanned aerial vehicle (UAV) with its manipulator as one agent, and leverage the power of multi-agent deep deterministic policy gradient (MADDPG) for the cooperative navigation and manipulation of a load. We propose solutions for addressing navigation to grasping point problem in targeted and flexible scenarios, and mainly focus on how to develop model-free policies for the UAVs without relying on a trajectory planner. To overcome the challenges of learning in scenarios with an increasing number of grasping points, we incorporate the demonstrations from an Optimal Reciprocal Collision Avoidance (ORCA) algorithm into our framework to guide the policy training and adapt two novel techniques into the architecture of MADDPG. Furthermore, curriculum learning with the attention mechanism is utilized by reusing knowledge from fewer grasping points to facilitate the training of a load with more points. Our experiments were validated by a load with three, four and six grasping points respectively in Coppeliasim simulator and then transferred into the real world with Crazyflie quadrotors. Our results show that the average tracking deviations from the desirable grasping point to the final position of the UAV can be less than 10 cm in some real-world experiments. Compared with state-of-the-art model-free reinforcement learning and swarm optimisation algorithms, results show that our proposed methods outperform other baselines with a reasonable success rate especially in the scenarios with more grasping points. Furthermore, the learned optimal policies enable UAVs to reach and hover over all the grasping points before manipulation without any collision. We conducted a comprehensive analysis of both targeted and flexible navigation, highlighting their respective advantages and disadvantages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞天猫发布了新的文献求助10
刚刚
刚刚
土豪的飞荷完成签到 ,获得积分10
刚刚
1秒前
1秒前
lipanpan发布了新的文献求助10
1秒前
盟盟发布了新的文献求助10
3秒前
ZHH发布了新的文献求助10
3秒前
4秒前
4秒前
酷炫抽屉完成签到 ,获得积分10
5秒前
科研小白发布了新的文献求助10
7秒前
8秒前
老阎应助飞天猫采纳,获得30
8秒前
9秒前
huph1992完成签到,获得积分20
9秒前
魔人啾啾完成签到,获得积分10
10秒前
10秒前
小叶同学完成签到,获得积分10
10秒前
坚强雅彤发布了新的文献求助10
11秒前
科研通AI6应助ZHH采纳,获得10
11秒前
只是开朗完成签到 ,获得积分10
12秒前
12秒前
派大星应助万嘉俊采纳,获得10
12秒前
科研通AI6应助南橘采纳,获得10
13秒前
务实的惜霜完成签到 ,获得积分10
13秒前
丶huasheng完成签到 ,获得积分10
13秒前
15秒前
爱文献发布了新的文献求助10
16秒前
初初见你发布了新的文献求助10
17秒前
18秒前
19秒前
ccc完成签到 ,获得积分10
20秒前
今后应助爱文献采纳,获得10
20秒前
派大星应助爱文献采纳,获得10
20秒前
可爱的函函应助爱文献采纳,获得10
20秒前
科目三应助爱文献采纳,获得10
20秒前
追寻清完成签到,获得积分10
20秒前
dw发布了新的文献求助10
21秒前
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848