A New Deep Learning-Based Method for Automated Identification of Thoracic Lymph Node Stations in Endobronchial Ultrasound (EBUS): A Proof-of-Concept Study

淋巴结 医学 放射科 深度学习 支气管内超声 计算机科学 淋巴 超声波 肺癌 人工智能 支气管镜检查 病理
作者
Øyvind Ervik,Mia Rødde,Erlend Fagertun Hofstad,Ingrid Tveten,Thomas Langø,Håkon Olav Leira,Tore Amundsen,Hanne Sorger
出处
期刊:Journal of Imaging [Multidisciplinary Digital Publishing Institute]
卷期号:11 (1): 10-10
标识
DOI:10.3390/jimaging11010010
摘要

Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a cornerstone in minimally invasive thoracic lymph node sampling. In lung cancer staging, precise assessment of lymph node position is crucial for clinical decision-making. This study aimed to demonstrate a new deep learning method to classify thoracic lymph nodes based on their anatomical location using EBUS images. Bronchoscopists labeled lymph node stations in real-time according to the Mountain Dressler nomenclature. EBUS images were then used to train and test a deep neural network (DNN) model, with intraoperative labels as ground truth. In total, 28,134 EBUS images were acquired from 56 patients. The model achieved an overall classification accuracy of 59.5 ± 5.2%. The highest precision, sensitivity, and F1 score were observed in station 4L, 77.6 ± 13.1%, 77.6 ± 15.4%, and 77.6 ± 15.4%, respectively. The lowest precision, sensitivity, and F1 score were observed in station 10L. The average processing and prediction time for a sequence of ten images was 0.65 ± 0.04 s, demonstrating the feasibility of real-time applications. In conclusion, the new DNN-based model could be used to classify lymph node stations from EBUS images. The method performance was promising with a potential for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Jasper应助风趣飞柏采纳,获得10
1秒前
西西发布了新的文献求助10
1秒前
小蜗完成签到,获得积分10
2秒前
陈子皮boy完成签到,获得积分10
2秒前
Milou发布了新的文献求助10
2秒前
wy完成签到,获得积分10
2秒前
2秒前
1345411532完成签到,获得积分10
2秒前
乔杰发布了新的文献求助10
3秒前
踏实夏瑶发布了新的文献求助30
3秒前
柯飞扬发布了新的文献求助10
3秒前
顺心的安珊完成签到 ,获得积分10
3秒前
4秒前
4秒前
笨笨的鬼神完成签到,获得积分10
4秒前
酷波er应助悲惨雪糕W采纳,获得10
6秒前
6秒前
卜天亦发布了新的文献求助10
6秒前
AAAAAAAAAAA发布了新的文献求助10
6秒前
羞涩的问兰完成签到,获得积分10
7秒前
萝卜杨晨发布了新的文献求助10
8秒前
鲜艳的从波完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI5应助兰真纯洁采纳,获得30
9秒前
9秒前
科研通AI5应助兰真纯洁采纳,获得10
9秒前
三笠发布了新的文献求助10
9秒前
浙江嘉兴完成签到,获得积分10
10秒前
阔达友琴发布了新的文献求助10
10秒前
华仔应助求助采纳,获得10
10秒前
pengchen完成签到 ,获得积分10
12秒前
黑摄会阿Fay完成签到,获得积分10
12秒前
1345411532发布了新的文献求助10
13秒前
大模型应助Qiqi采纳,获得10
13秒前
14秒前
隐形曼青应助xzy采纳,获得10
14秒前
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816654
求助须知:如何正确求助?哪些是违规求助? 3360106
关于积分的说明 10406570
捐赠科研通 3078132
什么是DOI,文献DOI怎么找? 1690563
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767883