已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Soft Electronics for Health Monitoring Assisted by Machine Learning

数码产品 计算机科学 人工智能 嵌入式系统 工程类 电气工程
作者
Yancong Qiao,Jinan Luo,Tianrui Cui,Haidong Liu,Hao Tang,Ying-Fen Zeng,Chang Liu,Yuanfang Li,Jinming Jian,Jingzhi Wu,He Tian,Yi Yang,Tian‐Ling Ren,Jianhua Zhou
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:15 (1) 被引量:75
标识
DOI:10.1007/s40820-023-01029-1
摘要

Abstract Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助量子星尘采纳,获得10
刚刚
今后应助量子星尘采纳,获得10
刚刚
刚刚
刚刚
情怀应助量子星尘采纳,获得10
1秒前
JS发布了新的文献求助10
1秒前
wanci应助量子星尘采纳,获得10
1秒前
alc完成签到,获得积分10
1秒前
爆米花应助量子星尘采纳,获得10
2秒前
Ava应助量子星尘采纳,获得10
2秒前
小蘑菇应助量子星尘采纳,获得10
2秒前
在水一方应助量子星尘采纳,获得10
2秒前
Ava应助量子星尘采纳,获得10
2秒前
桐桐应助量子星尘采纳,获得10
2秒前
天天快乐应助量子星尘采纳,获得10
2秒前
酷波er应助量子星尘采纳,获得10
2秒前
充电宝应助量子星尘采纳,获得30
3秒前
Ava应助量子星尘采纳,获得30
3秒前
可爱的函函应助量子星尘采纳,获得30
3秒前
思源应助量子星尘采纳,获得30
3秒前
缓慢的灵枫完成签到 ,获得积分10
3秒前
杨远杰完成签到 ,获得积分10
3秒前
CipherSage应助量子星尘采纳,获得30
4秒前
4秒前
香蕉觅云应助量子星尘采纳,获得30
4秒前
共享精神应助早睡早起采纳,获得10
4秒前
小马甲应助量子星尘采纳,获得30
4秒前
poorzz发布了新的文献求助10
4秒前
栗子呢呢呢完成签到 ,获得积分10
5秒前
酷波er应助量子星尘采纳,获得30
5秒前
CipherSage应助量子星尘采纳,获得30
5秒前
shi发布了新的文献求助10
5秒前
心灵美语兰完成签到 ,获得积分10
6秒前
酷波er应助量子星尘采纳,获得30
6秒前
HUO完成签到 ,获得积分10
6秒前
6秒前
汉堡包应助量子星尘采纳,获得30
6秒前
斯文败类应助量子星尘采纳,获得30
6秒前
赘婿应助MILL采纳,获得10
6秒前
Akim应助量子星尘采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722922
求助须知:如何正确求助?哪些是违规求助? 5273570
关于积分的说明 15297941
捐赠科研通 4871733
什么是DOI,文献DOI怎么找? 2616134
邀请新用户注册赠送积分活动 1566000
关于科研通互助平台的介绍 1522907