Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

深度学习 人工智能 计算机科学 卡斯普 蛋白质结构预测 从头算 同源建模 人工神经网络 模式识别(心理学) 蛋白质结构 生物系统 化学 生物 生物化学 有机化学
作者
Sheng Wang,Siqi Sun,Zhen Li,Renyu Zhang,Jinbo Xu
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:13 (1): e1005324-e1005324 被引量:882
标识
DOI:10.1371/journal.pcbi.1005324
摘要

Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction.This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question.Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then.http://raptorx.uchicago.edu/ContactMap/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhzha辉发布了新的文献求助10
1秒前
ding应助深情荆采纳,获得10
1秒前
Hello应助RR采纳,获得10
1秒前
1秒前
konghuihui发布了新的文献求助10
1秒前
李健的小迷弟应助何rj采纳,获得10
1秒前
搜集达人应助Sofia采纳,获得10
2秒前
2秒前
Lucas应助简单的白云采纳,获得10
2秒前
流雲发布了新的文献求助10
2秒前
在水一方应助liujiayi采纳,获得10
3秒前
那边v从完成签到,获得积分10
3秒前
4秒前
活泼的书包完成签到,获得积分10
4秒前
微毒麻醉发布了新的文献求助10
4秒前
momo完成签到,获得积分10
4秒前
唐萧发布了新的文献求助10
4秒前
靳bb发布了新的文献求助10
5秒前
5秒前
wzjs完成签到 ,获得积分10
5秒前
6秒前
陈风发布了新的文献求助30
6秒前
科研通AI5应助天真小甜瓜采纳,获得10
6秒前
Jasper应助俭朴的乐巧采纳,获得10
6秒前
SYLH应助Jack_Xue采纳,获得10
6秒前
ZhouYW应助含蓄的孤丝采纳,获得10
7秒前
Lucas应助Accelerator采纳,获得10
8秒前
板栗子发布了新的文献求助10
8秒前
星辰大海应助hanna采纳,获得20
9秒前
我是老大应助ddsyg126采纳,获得10
10秒前
猪猪hero发布了新的文献求助10
10秒前
weadu发布了新的文献求助10
11秒前
11秒前
lm00024完成签到,获得积分20
11秒前
winter发布了新的文献求助10
11秒前
12秒前
深情荆完成签到,获得积分20
13秒前
13秒前
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810074
求助须知:如何正确求助?哪些是违规求助? 3354579
关于积分的说明 10371678
捐赠科研通 3071023
什么是DOI,文献DOI怎么找? 1686711
邀请新用户注册赠送积分活动 811109
科研通“疑难数据库(出版商)”最低求助积分说明 766494