f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks

异常检测 人工智能 计算机科学 注释 模式识别(心理学) 源代码 特征(语言学) 残余物 机器学习 鉴别器 算法 语言学 电信 探测器 操作系统 哲学
作者
Thomas Schlegl,Philipp Seeböck,Sebastian M. Waldstein,Georg Langs,Ursula Schmidt‐Erfurth
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:54: 30-44 被引量:1311
标识
DOI:10.1016/j.media.2019.01.010
摘要

Obtaining expert labels in clinical imaging is difficult since exhaustive annotation is time-consuming. Furthermore, not all possibly relevant markers may be known and sufficiently well described a priori to even guide annotation. While supervised learning yields good results if expert labeled training data is available, the visual variability, and thus the vocabulary of findings, we can detect and exploit, is limited to the annotated lesions. Here, we present fast AnoGAN (f-AnoGAN), a generative adversarial network (GAN) based unsupervised learning approach capable of identifying anomalous images and image segments, that can serve as imaging biomarker candidates. We build a generative model of healthy training data, and propose and evaluate a fast mapping technique of new data to the GAN’s latent space. The mapping is based on a trained encoder, and anomalies are detected via a combined anomaly score based on the building blocks of the trained model – comprising a discriminator feature residual error and an image reconstruction error. In the experiments on optical coherence tomography data, we compare the proposed method with alternative approaches, and provide comprehensive empirical evidence that f-AnoGAN outperforms alternative approaches and yields high anomaly detection accuracy. In addition, a visual Turing test with two retina experts showed that the generated images are indistinguishable from real normal retinal OCT images. The f-AnoGAN code is available at https://github.com/tSchlegl/f-AnoGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding完成签到,获得积分10
1秒前
大帅比发布了新的文献求助30
2秒前
IU秋阳完成签到 ,获得积分10
2秒前
天真依玉完成签到,获得积分10
2秒前
opgg完成签到,获得积分10
2秒前
清脆的飞丹完成签到,获得积分10
2秒前
Bronya完成签到,获得积分10
2秒前
lcdamoy完成签到,获得积分10
2秒前
蜘猪侠zx应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得30
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
碧蓝绮山应助科研通管家采纳,获得10
4秒前
张雨露完成签到 ,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得20
4秒前
Hello应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
tcf应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
XRWei完成签到 ,获得积分10
6秒前
6秒前
丰裕口完成签到,获得积分10
7秒前
Fledge0611完成签到 ,获得积分10
8秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379091
求助须知:如何正确求助?哪些是违规求助? 4503505
关于积分的说明 14015967
捐赠科研通 4412216
什么是DOI,文献DOI怎么找? 2423735
邀请新用户注册赠送积分活动 1416630
关于科研通互助平台的介绍 1394129