Predicting Micropollutant Removal by Reverse Osmosis and Nanofiltration Membranes: Is Machine Learning Viable?

纳滤 反渗透 渗透 计算机科学 化学 人工智能 生化工程 机器学习 可靠性(半导体) 实验数据 工艺工程 工程类 数学 统计 物理 量子力学 生物化学 功率(物理)
作者
Nohyeong Jeong,Tai-Heng Chung,Tiezheng Tong
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (16): 11348-11359 被引量:83
标识
DOI:10.1021/acs.est.1c04041
摘要

Predictive models for micropollutant removal by membrane separation are highly desirable for the design and selection of appropriate membranes. While machine learning (ML) models have been applied for such purposes, their reliability might be compromised by data leakage due to inappropriate data splitting. More importantly, whether ML models can truly understand the mechanisms of membrane separation has not been revealed. In this study, we evaluate the capability of the XGBoost model to predict micropollutant removal efficiencies of reverse osmosis and nanofiltration membranes. Our results demonstrate that data leakage leads to falsely high prediction accuracy. By utilizing a model interpretation method based on the cooperative game theory, we test the knowledge of XGBoost on the mechanisms of membrane separation via quantifying the contributions of input variables to the model predictions. We reveal that XGBoost possesses an adequate understanding of size exclusion, but its knowledge of electrostatic interactions and adsorption is limited. Our findings suggest that future work should focus more on avoiding data leakage and evaluating the mechanistic knowledge of ML models. In addition, high-quality data from more diverse experimental conditions, as well as more informative variables, are needed to improve the accuracy of ML models for predicting membrane performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄黄完成签到,获得积分0
刚刚
875728314完成签到,获得积分10
刚刚
yuki完成签到 ,获得积分10
1秒前
orixero应助艾云欣采纳,获得10
1秒前
凤凰涅槃发布了新的文献求助10
2秒前
Dejavu发布了新的文献求助10
2秒前
壮壮完成签到 ,获得积分10
2秒前
若雨凌风应助孙宇采纳,获得20
5秒前
紫丁香完成签到,获得积分20
7秒前
9秒前
曾经凤灵应助deng203采纳,获得10
9秒前
9秒前
li完成签到,获得积分10
10秒前
11秒前
艾云欣发布了新的文献求助10
12秒前
慕青应助双马尾小男生采纳,获得10
12秒前
小W完成签到 ,获得积分10
12秒前
爆米花应助Dennis采纳,获得10
12秒前
tonyhuang完成签到,获得积分10
12秒前
13秒前
14秒前
Joye发布了新的文献求助10
15秒前
yls发布了新的文献求助10
17秒前
无花果应助saeda采纳,获得30
17秒前
zzuwxj发布了新的文献求助10
17秒前
17秒前
科研通AI5应助Wunier61采纳,获得10
18秒前
18秒前
如约而至完成签到 ,获得积分10
18秒前
19秒前
22秒前
耽书是宿缘完成签到,获得积分20
22秒前
22秒前
23秒前
秦晶晶发布了新的文献求助10
23秒前
鱼儿游发布了新的文献求助10
23秒前
23秒前
阿九完成签到,获得积分10
25秒前
25秒前
雨无意完成签到,获得积分10
26秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825251
求助须知:如何正确求助?哪些是违规求助? 3367521
关于积分的说明 10446344
捐赠科研通 3086892
什么是DOI,文献DOI怎么找? 1698353
邀请新用户注册赠送积分活动 816713
科研通“疑难数据库(出版商)”最低求助积分说明 769937