已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial cells with liquid–liquid phase separation–regulated cell-free protein synthesis

作者
Dongdong Fan,Kaini Liang,Bingjie Wu,Michael W. Chen,Chengyu Sun,Lei Sun,Yan Zhang,Yanan Du
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (47): e2511283122-e2511283122
标识
DOI:10.1073/pnas.2511283122
摘要

The rapid advancement of synthetic biology has enabled the construction of artificial cells that closely mimic the morphology and functionality of their natural counterparts. However, significant limitations remain in engineering artificial cells capable of regulated protein expression. Here, we demonstrate that engineered polymers containing multivalent association motifs can reversibly regulate translational activity through liquid–liquid phase separation (LLPS)–induced protein aggregation, enabling precise temporal control of cell-free protein synthesis (CFPS) activity. This aggregation mechanism exerts a broad inhibitory effect on various enzymes and facilitates the construction of artificial cells with controllable reaction processes. Leveraging this phenomenon, we have developed a microfluidic platform to fabricate giant unilamellar vesicles (GUVs) that encapsulate CFPS systems, thereby constructing artificial cells with finely tunable protein expression. By incorporating targeted DNA templates, these artificial cells can selectively express specific proteins in response to pH adjustments. Furthermore, in vivo studies using a bile duct ligation mouse model with liver injury further confirmed significant differences in protein expression under alkaline conditions compared to neutral conditions. Our findings highlight the potential of leveraging aggregate dynamics for precise, in situ modulation of protein synthesis within artificial cells, thereby opening avenues for their advanced biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助自觉的溪灵采纳,获得10
1秒前
田様应助old幽露露采纳,获得10
1秒前
华仔应助ltt采纳,获得10
1秒前
领导范儿应助yuanyuan采纳,获得10
2秒前
科研小贩发布了新的文献求助10
2秒前
2秒前
巛B发布了新的文献求助10
3秒前
一一发布了新的文献求助10
4秒前
蒋莹萱完成签到 ,获得积分10
5秒前
6秒前
6秒前
Cmqq发布了新的文献求助10
7秒前
7秒前
7秒前
冯露瑶发布了新的文献求助10
9秒前
11秒前
方盒完成签到 ,获得积分10
11秒前
12秒前
哈哈哈哈完成签到,获得积分10
14秒前
YZ完成签到,获得积分10
14秒前
曾经山灵完成签到 ,获得积分10
14秒前
细心的山槐完成签到,获得积分10
15秒前
彭于晏应助直率的菠萝采纳,获得10
15秒前
二中所长完成签到,获得积分10
18秒前
冯露瑶完成签到,获得积分20
18秒前
lyy发布了新的文献求助10
18秒前
李锐驳回了Lucas应助
20秒前
静谧180完成签到 ,获得积分10
20秒前
22秒前
25秒前
25秒前
所所应助kento采纳,获得30
26秒前
Orange应助科研通管家采纳,获得10
27秒前
BowieHuang应助科研通管家采纳,获得10
27秒前
fxfcpu发布了新的文献求助10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得10
27秒前
无花果应助科研通管家采纳,获得10
27秒前
fiife应助科研通管家采纳,获得10
27秒前
今后应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599471
求助须知:如何正确求助?哪些是违规求助? 4685106
关于积分的说明 14837681
捐赠科研通 4668281
什么是DOI,文献DOI怎么找? 2537976
邀请新用户注册赠送积分活动 1505410
关于科研通互助平台的介绍 1470783