Predicting Response to Neoadjuvant Therapy in Oesophageal Adenocarcinoma

医学 新辅助治疗 生物标志物 肿瘤科 放射治疗 内科学 梅德林 纳入和排除标准 腺癌 临床试验 病理 癌症 替代医学 乳腺癌 政治学 法学 化学 生物化学
作者
William Jiang,Jelske M. de Jong,Richard van Hillegersberg,Matthew Read
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:14 (4): 996-996 被引量:3
标识
DOI:10.3390/cancers14040996
摘要

(1) Background: Oesophageal cancers are often late-presenting and have a poor 5-year survival rate. The standard treatment of oesophageal adenocarcinomas involves neoadjuvant chemotherapy with or without radiotherapy followed by surgery. However, less than one third of patients respond to neoadjuvant therapy, thereby unnecessarily exposing patients to toxicity and deconditioning. Hence, there is an urgent need for biomarkers to predict response to neoadjuvant therapy. This review explores the current biomarker landscape. (2) Methods: MEDLINE, EMBASE and ClinicalTrial databases were searched with key words relating to "predictive biomarker", "neoadjuvant therapy" and "oesophageal adenocarcinoma" and screened as per the inclusion and exclusion criteria. All peer-reviewed full-text articles and conference abstracts were included. (3) Results: The search yielded 548 results of which 71 full-texts, conference abstracts and clinical trials were eligible for review. A total of 242 duplicates were removed, 191 articles were screened out, and 44 articles were excluded. (4) Discussion: Biomarkers were discussed in seven categories including imaging, epigenetic, genetic, protein, immunologic, blood and serum-based with remaining studies grouped in a miscellaneous category. (5) Conclusion: Although promising markers and novel methods have emerged, current biomarkers lack sufficient evidence to support clinical application. Novel approaches have been recommended to assess predictive potential more efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Murphy_H完成签到,获得积分10
刚刚
kk发布了新的文献求助20
2秒前
4秒前
一一完成签到,获得积分10
5秒前
Ollie完成签到,获得积分10
7秒前
淡然冬灵发布了新的文献求助10
7秒前
7秒前
9秒前
乐乐应助奋斗静蕾采纳,获得10
9秒前
dzjin驳回了man应助
12秒前
14秒前
曹官子完成签到 ,获得积分10
15秒前
务实的以松完成签到,获得积分10
15秒前
xxxgoldxsx完成签到,获得积分10
16秒前
吟賞烟霞完成签到,获得积分10
20秒前
20秒前
科研小民工应助dahuihui采纳,获得50
20秒前
去晒月亮发布了新的文献求助10
20秒前
俗不可奈完成签到,获得积分20
22秒前
23秒前
HNDuan完成签到,获得积分10
24秒前
25秒前
smile完成签到,获得积分10
26秒前
L756561205发布了新的文献求助10
26秒前
钠钾蹦发布了新的文献求助10
26秒前
前行的灿完成签到 ,获得积分10
27秒前
虚心的阿松完成签到,获得积分10
28秒前
kk完成签到,获得积分20
29秒前
whhhhhhhhh完成签到,获得积分10
29秒前
yui发布了新的文献求助10
30秒前
研友_nP2o58完成签到,获得积分10
31秒前
wanglu完成签到,获得积分10
31秒前
32秒前
简默发布了新的文献求助10
35秒前
JIANG0710完成签到,获得积分10
35秒前
英俊的铭应助简默采纳,获得10
40秒前
欧皇完成签到,获得积分20
41秒前
fff发布了新的文献求助20
46秒前
科研通AI5应助kk采纳,获得10
47秒前
L756561205完成签到,获得积分20
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781413
求助须知:如何正确求助?哪些是违规求助? 3326950
关于积分的说明 10228957
捐赠科研通 3041906
什么是DOI,文献DOI怎么找? 1669672
邀请新用户注册赠送积分活动 799201
科研通“疑难数据库(出版商)”最低求助积分说明 758757