Multi-objective optimisation of machining process parameters using deep learning-based data-driven genetic algorithm and TOPSIS

机械加工 托普西斯 遗传算法 过程(计算) 数学优化 帕累托原理 计算机科学 选择(遗传算法) 集合(抽象数据类型) 工程类 算法 机器学习 机械工程 数学 运筹学 程序设计语言 操作系统
作者
Pengcheng Wu,Yan He,Yufeng Li,Jingsen He,Xueqian Liu,Yulin Wang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:64: 40-52 被引量:67
标识
DOI:10.1016/j.jmsy.2022.05.016
摘要

Machining process is currently widely employed in mechanical manufacturing systems. Optimum selection of machining process parameters can improve the environmental impact and production efficiency of the machining process effectively. However, existing studies toward machining process parameters optimisation are focusing on computationally expensive numerical simulations and costly physical models, which are inefficient and labor-expensive. Moreover, the numerical simulations and physical models often show an unsatisfactory accuracy in the actual exploitation stage, which would make the final optimisation solution cannot achieve the best optimum results. Therefore, this paper proposes a deep learning based data-driven genetic algorithm and TOPSIS for multi objective optimisation of machining process parameters and searching the final solutions. First, deep learning is employed in this paper to automatically develop the data-driven prediction function of different optimized objectives. Then the developed optimized objective prediction function is converted into the surrogate model and integrated with the genetic algorithm for generating the Pareto set. Finally, the TOPSIS is employed to automatically search the best optimum processing parameter from the generated Pareto set. The experiments conducted on a milling machine and the experimental results show that the proposed parameters selection method is feasible and effective, and it can effectively and adjustably help operators to realize a balance among the multiple different conflicting objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助kevin采纳,获得10
2秒前
车车发布了新的文献求助10
2秒前
迎风笑落红完成签到,获得积分20
2秒前
2秒前
flyfish完成签到,获得积分10
2秒前
类类完成签到,获得积分10
4秒前
包远锋发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI5应助zj采纳,获得10
6秒前
ZX关闭了ZX文献求助
6秒前
搞怪夏天完成签到,获得积分10
7秒前
晨曦完成签到,获得积分10
7秒前
桐桐应助金晶采纳,获得10
7秒前
彭绍谦发布了新的文献求助10
7秒前
科研通AI5应助cloud采纳,获得10
8秒前
汉堡包应助song采纳,获得10
8秒前
8秒前
9秒前
大贝应助乐观的怀柔采纳,获得10
11秒前
852应助小小学神采纳,获得10
11秒前
12秒前
13秒前
13秒前
14秒前
勿明完成签到,获得积分10
15秒前
16秒前
KD发布了新的文献求助10
16秒前
16秒前
害羞雨南发布了新的文献求助20
17秒前
英俊白莲发布了新的文献求助30
17秒前
18秒前
CodeCraft应助yyz采纳,获得10
18秒前
研友_LkD29n完成签到 ,获得积分10
18秒前
金晶发布了新的文献求助10
21秒前
22秒前
共享精神应助李亚宁采纳,获得10
22秒前
22秒前
23秒前
24秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 200
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829704
求助须知:如何正确求助?哪些是违规求助? 3372318
关于积分的说明 10471594
捐赠科研通 3091901
什么是DOI,文献DOI怎么找? 1701530
邀请新用户注册赠送积分活动 818406
科研通“疑难数据库(出版商)”最低求助积分说明 770891