Nanoparticle Electrodes Trigger Bubble Detachment and Enhance Gas Evolution Efficiency

纳米颗粒 材料科学 电极 气泡 纳米技术 气泡 化学 物理 机械 物理化学
作者
Kaixin Wang,Esteban D. Gadea,Benjamin Money,Yamila A. Perez Sirkin,Damián A. Scherlis,Henry S. White,Valeria Molinero
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c00703
摘要

Nanobubble formation and binding to nanoelectrodes significantly hinder the efficiency of gas evolution reactions, limiting the potential of hydrogen production technologies. This work uncovers the pivotal role of the nanoelectrode shape in influencing catalytic performance and nanobubble detachment. Using molecular dynamics simulations supported by experimental evidence, we establish that nanoparticle electrodes with convex geometries (e.g., hemispheres, spheres, and cubes) sustain higher catalytic performance by maintaining greater reactive surface exposure than flat or concave electrodes. Most importantly, we demonstrate that convex nanoparticle electrodes mitigate bubble pinning by promoting unlimited growth and spontaneous detachment. We develop a diffusional theory that explains and generalizes our simulations, predicting the onset currents that drive nanobubbles into a nonstationary growth regime. This theory reveals that the transition to continuous bubble growth occurs when the electrochemically generated gas rate surpasses the diffusion-limited escape rate, independent of electrode size and convex shape but sensitive to the electrode support. The theoretical model extends the predictions to other gas-evolving electrochemical processes, highlighting its relevance to diverse catalytic systems. Surprisingly, our calculations reveal that bubble detachment contributes minimally to the total current. Instead, the enhanced catalytic efficiency of convex electrodes stems from their ability to sustain an exposed reactive surface, even during bubble growth. These findings provide a fundamental framework for designing nanoelectrodes that optimize gas evolution by prioritizing surface exposure rather than relying solely on bubble detachment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助欧气小天鹅采纳,获得10
1秒前
搜集达人应助鲤鱼小蕾采纳,获得10
1秒前
阿念完成签到,获得积分10
1秒前
倒卖土豆发布了新的文献求助10
1秒前
tang发布了新的文献求助10
2秒前
嘻嘻发布了新的文献求助10
2秒前
余弥发布了新的文献求助10
3秒前
无限的凡波完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
123发布了新的文献求助10
3秒前
3秒前
3秒前
cmuwinni完成签到,获得积分10
4秒前
4秒前
淡定初珍发布了新的文献求助10
4秒前
5秒前
Orange应助陈柯宇采纳,获得10
5秒前
5秒前
烟花应助niuniuff66采纳,获得10
5秒前
April发布了新的文献求助10
5秒前
仲大船完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
sgfiii完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
小熊丢了发布了新的文献求助20
6秒前
崔铭哲发布了新的文献求助10
6秒前
汝桢发布了新的文献求助10
7秒前
7秒前
睿智鱼仔发布了新的文献求助10
7秒前
7秒前
HXDong123发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384404
求助须知:如何正确求助?哪些是违规求助? 3877671
关于积分的说明 12079367
捐赠科研通 3521080
什么是DOI,文献DOI怎么找? 1932360
邀请新用户注册赠送积分活动 973565
科研通“疑难数据库(出版商)”最低求助积分说明 871824