清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning techniques for fault detection in rotating mechanical systems

故障检测与隔离 机械系统 计算机科学 工程类 人工智能 机械工程 控制工程 执行机构
作者
Igor Feliciani Merizio,Fábio Roberto Chavarette,Estevão Fuzaro de Almeida
出处
期刊:Engineering Computations [Emerald Publishing Limited]
标识
DOI:10.1108/ec-09-2024-0896
摘要

Purpose The purpose of this work is to develop and evaluate artificial intelligence (AI) models, specifically neural networks, random forest and XGBoost, for fault detection and localization in dynamic systems. By comparing the performance of these models in terms of accuracy, precision, recall and other key metrics, this study aims to identify the most effective approach for predictive maintenance in various engineering applications. The results provide insights into the strengths and limitations of each model, offering practical guidance for implementing AI-driven solutions to enhance operational reliability and efficiency in industries reliant on complex, dynamic machinery. Design/methodology/approach This study employs a comparative analysis of three machine learning algorithms – neural networks, random forest and XGBoost for fault detection in dynamic systems. The methodology includes data preprocessing, feature extraction and hyperparameter optimization using grid search and randomized search techniques. The models are trained and validated using cross-validation, with performance evaluated on accuracy, precision, recall, F1 Score and ROC AUC. Statistical tests, including ANOVA and paired T -tests, are applied to assess the significance of the differences between models. The approach ensures a rigorous evaluation of each model’s strengths and limitations for practical applications in predictive maintenance. Findings The findings reveal that XGBoost consistently outperforms neural networks and random forest in key performance metrics such as accuracy, precision and ROC AUC, demonstrating its effectiveness in fault detection for dynamic systems. The statistical analysis using ANOVA and paired T -tests confirms the significance of XGBoost’s superior performance. While random forest shows robust interpretability and neural networks perform well in certain scenarios, XGBoost’s ability to handle imbalanced data and deliver high accuracy makes it the most suitable model for predictive maintenance applications. These results provide a clear direction for selecting machine learning models in fault detection tasks. Research limitations/implications The research is limited by the use of a specific dataset and may not generalize to all dynamic systems or industrial environments. While XGBoost demonstrated superior performance, further validation is needed with diverse datasets and real-world conditions. Additionally, the study focuses on a few key metrics and does not explore other potential factors such as computational efficiency and scalability in large-scale systems. Future work should incorporate additional datasets, including real-time data and explore hybrid approaches or model ensembles to improve performance further and ensure broader applicability across various engineering applications. Practical implications This study provides practical insights for implementing AI-based fault detection in dynamic systems, particularly in predictive maintenance. By identifying XGBoost as the most effective model, industries can leverage this algorithm to improve operational reliability and reduce downtime. The findings offer a clear methodology for data preprocessing, model training and performance evaluation, which can be directly applied in sectors like manufacturing, energy and automotive. The research also highlights the importance of selecting the right model based on system requirements, offering practical guidance for engineers seeking to integrate AI solutions into their maintenance and monitoring processes. Originality/value This study offers a unique contribution by providing a comprehensive comparison of three widely-used machine learning models – neural networks, random forest and XGBoost – specifically applied to fault detection in dynamic systems. Through the use of statistical tests to validate the significance of performance differences, it offers a rigorous and objective assessment of each model’s capabilities. The findings deliver practical value to industries seeking to implement AI-driven predictive maintenance. By highlighting XGBoost’s superior performance and offering clear guidelines for model selection and implementation, this work addresses a critical gap in the literature related to AI applications in fault detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eric800824完成签到 ,获得积分10
1分钟前
欢呼的茗茗完成签到 ,获得积分10
1分钟前
sysi完成签到 ,获得积分10
2分钟前
义气雁完成签到 ,获得积分10
2分钟前
2分钟前
Stellarshi517发布了新的文献求助10
2分钟前
baobeikk完成签到,获得积分10
2分钟前
ldjldj_2004完成签到 ,获得积分10
2分钟前
haprier完成签到 ,获得积分10
2分钟前
jun完成签到,获得积分10
2分钟前
快乐随心完成签到 ,获得积分10
2分钟前
杪夏二八完成签到 ,获得积分10
3分钟前
冷傲半邪完成签到,获得积分10
3分钟前
4分钟前
杨天天完成签到 ,获得积分10
4分钟前
矿泉水完成签到 ,获得积分10
5分钟前
iShine完成签到 ,获得积分10
5分钟前
深情安青应助科研通管家采纳,获得10
5分钟前
小马甲应助单纯的雅香采纳,获得80
6分钟前
满意的伊完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
充电宝应助科研小白采纳,获得10
6分钟前
majx发布了新的文献求助10
6分钟前
绿色心情完成签到 ,获得积分10
6分钟前
消烦员完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
erfan发布了新的文献求助10
7分钟前
不去明知山完成签到 ,获得积分10
7分钟前
土拨鼠完成签到 ,获得积分10
7分钟前
研友_8y2o0L完成签到,获得积分20
7分钟前
hmf1995完成签到 ,获得积分10
7分钟前
李健应助林沐采纳,获得10
7分钟前
林沐给林沐的求助进行了留言
8分钟前
erfan完成签到,获得积分10
8分钟前
Wang完成签到 ,获得积分20
8分钟前
AAAAA应助精神采纳,获得10
8分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825008
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445264
捐赠科研通 3086687
什么是DOI,文献DOI怎么找? 1698201
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907