Fusion ConvLSTM-Net: Using Spatiotemporal Features to Increase Residential Load Forecast Horizon

计算机科学 人工智能 地平线 融合 机器学习 数学 哲学 语言学 几何学
作者
Abhishu Oza,Dhaval K. Patel,Bryan J. Ranger
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2025.3528072
摘要

Power systems are undergoing a significant transition towards renewable energy technologies. To make the most of these energy sources, optimizing the generation, storage, and distribution of energy can be enhanced with accurate forecasts of future energy consumption. Forecasting the load of individual residents plays a key role in load balancing, but it remains challenging due to the irregular nature of individual consumption patterns. Moreover, the current literature is limited to forecasting residential load to only a few hours in the future. In this paper, we propose Fusion ConvLSTM-Net, a novel fusion encoder-decoder architecture that combines both spatial and temporal features to extend the load forecast to a full 24 hour period. We evaluated the model against several benchmark neural network models by: 1) testing different forecast window sizes ranging from 1.5 to 24 hours, 2) assessing model performance across multiple households, and 3) performing large-scale forecasting by aggregating predictions from 100 households. Additionally, we analyzed the model's forecasts to identify potential degradation. Our extensive experiments demonstrate that the Fusion ConvLSTM-Net not only extends the forecast window to 24 hours but also reduces the prediction error rate by approximately 47% compared to the next best model, improves the accuracy of aggregate load forecasts, and prevents model degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒闭月完成签到,获得积分10
刚刚
POKKKK完成签到,获得积分10
刚刚
1秒前
claude完成签到,获得积分10
1秒前
2秒前
凡仔完成签到,获得积分10
3秒前
4秒前
捡垃圾的小破烂完成签到,获得积分20
4秒前
彩虹猫完成签到 ,获得积分10
5秒前
xyx发布了新的文献求助10
5秒前
犹豫书雪发布了新的文献求助10
6秒前
7秒前
huan完成签到,获得积分10
8秒前
8秒前
哆啦A梦发布了新的文献求助10
8秒前
木言发布了新的文献求助10
9秒前
风中的青完成签到,获得积分10
9秒前
姬鲁宁完成签到 ,获得积分10
10秒前
桐桐应助犹豫书雪采纳,获得10
11秒前
所所应助xiaoxiao采纳,获得10
11秒前
慕青应助FLOW采纳,获得10
12秒前
yoyo发布了新的文献求助10
14秒前
xyx完成签到,获得积分10
15秒前
15秒前
orixero应助VicTarZ采纳,获得10
16秒前
科研通AI5应助宋虹采纳,获得10
19秒前
容止完成签到 ,获得积分10
21秒前
可爱的函函应助galaxy采纳,获得30
22秒前
赘婿应助小猪佩奇采纳,获得10
24秒前
rockxie完成签到 ,获得积分10
24秒前
烟花应助Jemma采纳,获得10
24秒前
深情安青应助伊吹风子采纳,获得10
24秒前
顾矜应助clcl采纳,获得10
26秒前
武装大脑完成签到,获得积分10
27秒前
共享精神应助木言采纳,获得10
28秒前
Yuan完成签到,获得积分10
29秒前
31秒前
33秒前
hj完成签到,获得积分10
34秒前
小猪佩奇发布了新的文献求助10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341711
关于积分的说明 10307271
捐赠科研通 3058290
什么是DOI,文献DOI怎么找? 1678094
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838