Abstract 134: Use of Large Language Model to Allow Reliable Data Acquisition for International Pediatric Stroke Study

医学 冲程(发动机) 小儿中风 医学物理学 缺血性中风 内科学 机械工程 工程类 缺血
作者
Kriti Bhayana,Dulin Wang,Xiaoqian Jiang,Stuart Fraser
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:56 (Suppl_1)
标识
DOI:10.1161/str.56.suppl_1.134
摘要

Introduction: Pediatric stroke research is hindered by lack of funding and relative disease rarity. Shared data in pediatric stroke is done via non-reimbursed data input by clinical investigators at participating children’s hospitals with the International Pediatric Stroke Study (IPSS). Large Language Models (LLM) can potentially reduce investigator workload through automated data entry. In prior research, investigators were able to achieve 94% accuracy while using a prompt engineering approach with Generative Pretrained Transformer 4 (GPT4) to enter subject outcome forms of the IPSS using clinical notes. However, GPT4 performed only moderately (~50% correct) while attempting to answer some of the data questions. In this study we aim to utilize another toolkit called the “Instructor” to improve the performance of the LLM in areas where the prior method achieved less than 90% accuracy. Methods: This retrospective study used de-identified clinical notes of 50 patients who presented to UTHealth Pediatric Stroke Clinic between January 2020 and July 2023 with ischemic stroke. Each note was run through the offline HIPAA compliant LLM “GPT4o” to answer questions in the outcome form of IPSS. We focused on areas of the IPSS outcome form where prior approach yielded less than 90% accuracy. We implemented the "Instructor", a Python library built on Pydantic, to enhance prompt engineering and ensure structured outputs. Accuracy was measured as percent agreement between the LLM generated and investigator-entered data. We used simple descriptive statistics to compare the accuracy (% correct) of Instructor method with clinical investigator-entered data and previously reported results from traditional prompt engineering method. Results: We analyzed neurological deficit severity and post discharge rehabilitation questions. This algorithm reported 100% accuracy for both neurological deficit severity and post discharge rehabilitation as compared to accuracy with the previous method (46-54% and 26-62% respectively). Conclusion: In this study, utilization of the “Instructor” shows promising results for reliable data retrieval. Moving forward, we will use Instructor to analyze the neurological deficit type, follow-up imaging type and findings based on imaging, and expand this approach to other sections of the IPSS forms. LLMs may reduce investigator workload and increase the efficiency of observational research for rare, underserved diseases like pediatric stroke in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yiyi完成签到,获得积分10
2秒前
孙皮皮发布了新的文献求助10
2秒前
聪明汉堡发布了新的文献求助10
2秒前
11完成签到,获得积分10
2秒前
hhllhh完成签到,获得积分10
2秒前
3秒前
LBJ发布了新的文献求助10
3秒前
可靠的老鼠完成签到,获得积分10
3秒前
3秒前
继往开来完成签到,获得积分10
4秒前
Yuchen完成签到,获得积分20
5秒前
陳陳完成签到,获得积分10
5秒前
彩色的奄发布了新的文献求助10
5秒前
5秒前
Cml完成签到,获得积分20
5秒前
钩子89发布了新的文献求助10
6秒前
可莉完成签到 ,获得积分10
6秒前
坚强不言完成签到,获得积分10
6秒前
浪而而发布了新的文献求助10
6秒前
ZILIANGXI完成签到,获得积分10
7秒前
miao完成签到,获得积分10
7秒前
8秒前
8秒前
传奇3应助sdl采纳,获得10
8秒前
喵喵发布了新的文献求助10
8秒前
西原的橙果完成签到,获得积分10
10秒前
10秒前
11秒前
hktbk完成签到 ,获得积分10
11秒前
鱼0306完成签到,获得积分10
11秒前
林小雨发布了新的文献求助10
12秒前
Owen应助kefir采纳,获得10
13秒前
13秒前
13秒前
rice0601发布了新的文献求助10
14秒前
14秒前
lylyzhl发布了新的文献求助10
14秒前
李婷婷发布了新的文献求助10
14秒前
mountainzz完成签到,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100732
求助须知:如何正确求助?哪些是违规求助? 3638476
关于积分的说明 11530053
捐赠科研通 3347317
什么是DOI,文献DOI怎么找? 1839630
邀请新用户注册赠送积分活动 906829
科研通“疑难数据库(出版商)”最低求助积分说明 824041