AI-driven Innovations in Assessing Stress, Anxiety, and Mental Health

焦虑 心理健康 心理学 压力(语言学) 临床心理学 应用心理学 精神科 哲学 语言学
作者
Aparna Inamdar,Bannimath Gurupadayya,Mukesh Kumar Gautam,Arushi Sharma,Rashmi Pathak,Himanshu Sharma
出处
期刊:Current psychiatry research and review [Bentham Science]
卷期号:21
标识
DOI:10.2174/0126660822334997241216062002
摘要

Artificial Intelligence (AI) is mainly utilized to measure stress, anxiety, and overall mental well-being, but it is still under evaluation. This review aims to address some of the inadequacies of current healthcare practices through the utilization of AI technology for monitoring, diagnosing, and transforming mental health conditions. The application of machine learning algorithms and natural language processing techniques to assess speech, physiological indicators, and behavioral patterns is the essence of the AI approach. These AI-based algorithms enable the detection of subtle and often imperceptible signs of psychological distress, which conventional clinical assessments find difficult to analyze. The application of speech analysis to detect changes in pitch, speed, and tone that might be connected to feelings of depression or anxiety. Similarly, sentiment analysis and face recognition technologies are applied to textual data and facial expressions to discern emotional states. Incorporating the importance of ethical and privacy concerns, these AI modules potentially offer unparalleled objectivity and accuracy in mental health assessments. AI also raises grave issues around data security and the ethical use of personal information, as it depends on the development of AI technologies and applications, significantly impacting their uptake and effectiveness. The key advantage of AI is the ability to provide ongoing, real-time mental health monitoring by offering a more flexible and dynamic approach to mental health therapy. Overall, this article provides a comprehensive overview of the revolutionary potential of AI in mental health assessment by encapsulating the cutting-edge applications and considerable critical ethical concerns to provide effective and efficient mental health treatment universally.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KongShan完成签到,获得积分10
1秒前
3秒前
4秒前
gzslwddhjx完成签到,获得积分10
4秒前
Wonder罗完成签到,获得积分10
5秒前
6秒前
朱权圣完成签到,获得积分10
6秒前
llyy完成签到,获得积分10
7秒前
丰富硬币完成签到 ,获得积分10
7秒前
7秒前
有梦不觉人生寒完成签到,获得积分10
8秒前
8秒前
9秒前
Finen完成签到,获得积分10
9秒前
9秒前
9秒前
tanrui完成签到,获得积分10
9秒前
10秒前
十二发布了新的文献求助10
11秒前
11秒前
张惠完成签到,获得积分10
11秒前
Finen发布了新的文献求助10
11秒前
乐乐应助我爱谭咏麟采纳,获得10
12秒前
DC应助祥云齐天采纳,获得20
12秒前
临泉发布了新的文献求助10
12秒前
现代怀蝶发布了新的文献求助10
13秒前
14秒前
tayslay完成签到,获得积分10
15秒前
老班长完成签到,获得积分10
16秒前
科研通AI5应助旅行的天空采纳,获得10
16秒前
所所应助yyj采纳,获得10
16秒前
喜之郎发布了新的文献求助10
16秒前
Lml完成签到,获得积分10
16秒前
专注的秋翠完成签到,获得积分10
16秒前
一一发布了新的文献求助10
17秒前
18秒前
acd完成签到,获得积分10
21秒前
23秒前
科研通AI5应助猪猪侠采纳,获得10
23秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Methods and Applications of Geochronology 200
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831805
求助须知:如何正确求助?哪些是违规求助? 3373943
关于积分的说明 10482648
捐赠科研通 3093880
什么是DOI,文献DOI怎么找? 1703103
邀请新用户注册赠送积分活动 819287
科研通“疑难数据库(出版商)”最低求助积分说明 771411