线性化
二部图
控制器(灌溉)
控制理论(社会学)
非线性系统
迭代学习控制
凸壳
遏制(计算机编程)
多智能体系统
反馈线性化
迭代法
计算机科学
跟踪(教育)
弹道
数学
数学优化
控制(管理)
正多边形
人工智能
理论计算机科学
心理学
教育学
几何学
农学
程序设计语言
图形
天文
生物
量子力学
物理
作者
Ruikun Zhang,Shangyu Sang,Jingyuan Zhang,Xue Lin
标识
DOI:10.1007/s11063-024-11649-2
摘要
Abstract This paper proposes a quantized model-free adaptive iterative learning control (MFAILC) algorithm to solve the bipartite containment tracking problem of unknown nonlinear multi-agent systems, where the interactions between agents include cooperation and antagonistic interactions. To design the controller, the agent’s dynamics is transformed into the linear data model based on the dynamic linearization method, and then a quantized MFAILC algorithm is established based on the quantized values of the relative output measurements. The designed controller only depends on the input and output data of the agent. We prove that under the quantized MFAILC algorithm, the multi-agent systems can achieve the bipartite containment, that is, the output trajectories of followers converge to the convex hull formed by the leaders’ trajectories and the leaders’ symmetric trajectories. Finally, we provide simulations to illustrate the effectiveness of our theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI