A Deep Learning Framework Integrating Tumor Microenvironmental Features Accurately Predicts Multiple Driver Gene Mutations in Lung Cancer Pathology Images

作者
Liangrui Pan,Jiadi Luo,Xiang Wang,Shaoliang Peng
出处
期刊:Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/0008-5472.can-25-0582
摘要

Abstract Deep learning (DL) has the potential to enable the prediction of gene mutations directly from routine histopathology slides in lung cancer. However, existing approaches have largely been limited to mutation-level prediction and have not achieved precise identification of driver mutation subtypes or exonic variants, constraining the translation of DL into targeted therapy. In this study, we assembled a large multicenter dataset of paired pathology images and next-generation sequencing from 2573 lung cancer patients from four hospitals in China. Development of NAVF-Bio, an adaptive multi-view feature fusion framework based on multiple-instance learning, enabled integration of tumor microenvironment (TME) features from whole-slide images (WSIs) to predict driver mutations and tumor mutational burden (TMB). Benchmarking against 11 state-of-the-art DL methods indicated that NAVF-Bio consistently outperformed existing models in predicting driver mutations (TP53, EGFR, KRAS, ALK) and TMB status, achieving clinically relevant performance in external multicenter validation. Notably, NAVF-Bio accurately predicted the mutated driver gene exons across centers, while interpretability analyses using WSI visualization and TME quantification further demonstrated the ability of NAVF-Bio to elucidate pathologically relevant tumor features. Finally, a multi-gene mutation prediction platform for lung cancer was generated to facilitate the screening of driver gene mutations. Overall, NAVF-Bio mimics the workflow of pathologists when examining slides by observing multi-scale features of WSIs and TME characteristics to predict driver gene mutations in lung cancer, which could guide the selection of targeted therapies for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助mtf采纳,获得10
刚刚
俊逸成危发布了新的文献求助10
刚刚
my发布了新的文献求助10
刚刚
nk完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
热心丹南发布了新的文献求助20
2秒前
自觉紫安发布了新的文献求助10
2秒前
小蘑菇应助seeker347采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
桀庚发布了新的文献求助10
3秒前
3秒前
真正的针男人完成签到,获得积分10
4秒前
4秒前
4秒前
jxl完成签到 ,获得积分10
4秒前
4秒前
科研通AI6应助melon采纳,获得10
4秒前
gougoubao发布了新的文献求助10
4秒前
Ava应助FG采纳,获得10
5秒前
BINGBING1230应助Maestro_S采纳,获得100
5秒前
6秒前
6秒前
打打应助duzhongyan采纳,获得10
7秒前
7秒前
小马甲应助愉快迎荷采纳,获得10
7秒前
清秀的初翠完成签到,获得积分10
7秒前
新新发布了新的文献求助10
7秒前
8秒前
领导范儿应助许悦采纳,获得10
9秒前
one time发布了新的文献求助10
9秒前
9秒前
9秒前
Akim应助瘦瘦雅香采纳,获得10
9秒前
Dank1ng发布了新的文献求助10
9秒前
10秒前
10秒前
朽木发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526338
求助须知:如何正确求助?哪些是违规求助? 4616396
关于积分的说明 14553657
捐赠科研通 4554678
什么是DOI,文献DOI怎么找? 2496015
邀请新用户注册赠送积分活动 1476342
关于科研通互助平台的介绍 1447998