AGDF-Net: Learning Domain Generalizable Depth Features With Adaptive Guidance Fusion

计算机科学 人工智能 领域(数学分析) 特征(语言学) 特征提取 网(多面体) 模式识别(心理学) 机器学习 计算机视觉 数学 数学分析 哲学 语言学 几何学
作者
Lina Liu,Xibin Song,Mengmeng Wang,Yuchao Dai,Yong Liu,Liangjun Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (5): 3137-3155 被引量:1
标识
DOI:10.1109/tpami.2023.3342634
摘要

Cross-domain generalizable depth estimation aims to estimate the depth of target domains (i.e., real-world) using models trained on the source domains (i.e., synthetic). Previous methods mainly use additional real-world domain datasets to extract depth specific information for cross-domain generalizable depth estimation. Unfortunately, due to the large domain gap, adequate depth specific information is hard to obtain and interference is difficult to remove, which limits the performance. To relieve these problems, we propose a domain generalizable feature extraction network with adaptive guidance fusion (AGDF-Net) to fully acquire essential features for depth estimation at multi-scale feature levels. Specifically, our AGDF-Net first separates the image into initial depth and weak-related depth components with reconstruction and contrary losses. Subsequently, an adaptive guidance fusion module is designed to sufficiently intensify the initial depth features for domain generalizable intensified depth features acquisition. Finally, taking intensified depth features as input, an arbitrary depth estimation network can be used for real-world depth estimation. Using only synthetic datasets, our AGDF-Net can be applied to various real-world datasets (i.e., KITTI, NYUDv2, NuScenes, DrivingStereo and CityScapes) with state-of-the-art performances. Furthermore, experiments with a small amount of real-world data in a semi-supervised setting also demonstrate the superiority of AGDF-Net over state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶艺大师づ完成签到,获得积分0
1秒前
许元冬完成签到,获得积分10
1秒前
william完成签到,获得积分10
1秒前
日落之前逃跑吧完成签到,获得积分10
2秒前
地平线发布了新的文献求助10
2秒前
虎皮青椒完成签到,获得积分10
2秒前
2秒前
3秒前
赵鹏发布了新的文献求助10
4秒前
懦弱的棉花糖完成签到,获得积分20
5秒前
5秒前
5秒前
咕噜发布了新的文献求助20
6秒前
CipherSage应助地平线采纳,获得10
6秒前
7秒前
7秒前
李健应助彦卿采纳,获得10
7秒前
小宋应助frank采纳,获得10
8秒前
郭小胖14完成签到,获得积分10
9秒前
无花果应助nanana采纳,获得10
11秒前
拼搏的凤完成签到,获得积分10
11秒前
11秒前
海螺姑娘完成签到,获得积分10
11秒前
12秒前
大个应助liz采纳,获得10
12秒前
13秒前
石建霏完成签到,获得积分10
13秒前
香蕉觅云应助白潇潇采纳,获得10
13秒前
在水一方应助Giner采纳,获得10
13秒前
sen完成签到,获得积分10
14秒前
Cici发布了新的文献求助10
14秒前
华仔应助罗淑茵采纳,获得10
14秒前
脑洞疼应助清脆的惜雪采纳,获得10
15秒前
15秒前
仙贝完成签到,获得积分10
15秒前
15秒前
李健应助jin采纳,获得10
16秒前
田様应助dm11采纳,获得10
17秒前
HF关闭了HF文献求助
17秒前
zho发布了新的文献求助10
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834749
求助须知:如何正确求助?哪些是违规求助? 3377312
关于积分的说明 10497565
捐赠科研通 3096727
什么是DOI,文献DOI怎么找? 1705124
邀请新用户注册赠送积分活动 820484
科研通“疑难数据库(出版商)”最低求助积分说明 772055