A novel CT-based radiomics model for predicting response and prognosis of chemoradiotherapy in esophageal squamous cell carcinoma

医学 无线电技术 放化疗 队列 单变量 内科学 肿瘤科 食管鳞状细胞癌 多元分析 单变量分析 人工智能 癌症 多元统计 机器学习 放射科 计算机科学
作者
Atsunobu Kasai,Jinsei Miyoshi,Yasushi Sato,Koichi Okamoto,Hiroshi Miyamoto,Takashi Kawanaka,Chisato Tonoiso,Masafumi Harada,Masakazu Goto,Takahiro Yoshida,Akihiro Haga,Tetsuji Takayama
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-52418-4
摘要

Abstract No clinically relevant biomarker has been identified for predicting the response of esophageal squamous cell carcinoma (ESCC) to chemoradiotherapy (CRT). Herein, we established a CT-based radiomics model with artificial intelligence (AI) to predict the response and prognosis of CRT in ESCC. A total of 44 ESCC patients (stage I-IV) were enrolled in this study; training (n = 27) and validation (n = 17) cohorts. First, we extracted a total of 476 radiomics features from three-dimensional CT images of cancer lesions in training cohort, selected 110 features associated with the CRT response by ROC analysis (AUC ≥ 0.7) and identified 12 independent features, excluding correlated features by Pearson’s correlation analysis (r ≥ 0.7). Based on the 12 features, we constructed 5 prediction models of different machine learning algorithms (Random Forest (RF), Ridge Regression, Naive Bayes, Support Vector Machine, and Artificial Neural Network models). Among those, the RF model showed the highest AUC in the training cohort (0.99 [95%CI 0.86–1.00]) as well as in the validation cohort (0.92 [95%CI 0.71–0.99]) to predict the CRT response. Additionally, Kaplan-Meyer analysis of the validation cohort and all the patient data showed significantly longer progression-free and overall survival in the high-prediction score group compared with the low-prediction score group in the RF model. Univariate and multivariate analyses revealed that the radiomics prediction score and lymph node metastasis were independent prognostic biomarkers for CRT of ESCC. In conclusion, we have developed a CT-based radiomics model using AI, which may have the potential to predict the CRT response as well as the prognosis for ESCC patients with non-invasiveness and cost-effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然幻然发布了新的文献求助10
刚刚
wangli发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
fang发布了新的文献求助10
1秒前
一一完成签到,获得积分10
1秒前
YYY完成签到,获得积分20
2秒前
2秒前
SuyingGuo发布了新的文献求助20
3秒前
科研通AI5应助YinCola采纳,获得10
3秒前
英姑应助xlp采纳,获得10
3秒前
zzz完成签到,获得积分10
4秒前
思源应助没有力力采纳,获得10
4秒前
Baywreath关注了科研通微信公众号
4秒前
tian发布了新的文献求助10
4秒前
静影沉璧完成签到,获得积分10
5秒前
小蘑菇应助haha采纳,获得10
5秒前
老细发布了新的文献求助10
5秒前
hyl完成签到,获得积分10
5秒前
骄傲的叶凡完成签到,获得积分10
5秒前
共享精神应助Jocelyn采纳,获得10
5秒前
快乐难敌发布了新的文献求助10
6秒前
Ferry发布了新的文献求助10
6秒前
别拿暗恋当饭吃完成签到 ,获得积分10
6秒前
7秒前
科研通AI5应助wangli采纳,获得10
7秒前
8秒前
Owen应助落后的小伙采纳,获得10
8秒前
chenlixin发布了新的文献求助10
8秒前
幸运星完成签到 ,获得积分10
8秒前
Khan发布了新的文献求助10
8秒前
8秒前
wx发布了新的文献求助20
9秒前
9秒前
9秒前
李爱国应助phase采纳,获得10
9秒前
冉冉完成签到,获得积分10
10秒前
蛋黄的阿爸完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4698116
求助须知:如何正确求助?哪些是违规求助? 4067402
关于积分的说明 12574949
捐赠科研通 3766869
什么是DOI,文献DOI怎么找? 2080287
邀请新用户注册赠送积分活动 1108374
科研通“疑难数据库(出版商)”最低求助积分说明 986687