A novel CT-based radiomics model for predicting response and prognosis of chemoradiotherapy in esophageal squamous cell carcinoma

医学 无线电技术 放化疗 队列 单变量 内科学 肿瘤科 食管鳞状细胞癌 多元分析 单变量分析 人工智能 癌症 多元统计 机器学习 放射科 计算机科学
作者
Atsunobu Kasai,Jinsei Miyoshi,Yasushi Sato,Koichi Okamoto,Hiroshi Miyamoto,Takashi Kawanaka,Chisato Tonoiso,Masafumi Harada,Masakazu Goto,Takahiro Yoshida,Akihiro Haga,Tetsuji Takayama
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-52418-4
摘要

Abstract No clinically relevant biomarker has been identified for predicting the response of esophageal squamous cell carcinoma (ESCC) to chemoradiotherapy (CRT). Herein, we established a CT-based radiomics model with artificial intelligence (AI) to predict the response and prognosis of CRT in ESCC. A total of 44 ESCC patients (stage I-IV) were enrolled in this study; training (n = 27) and validation (n = 17) cohorts. First, we extracted a total of 476 radiomics features from three-dimensional CT images of cancer lesions in training cohort, selected 110 features associated with the CRT response by ROC analysis (AUC ≥ 0.7) and identified 12 independent features, excluding correlated features by Pearson’s correlation analysis (r ≥ 0.7). Based on the 12 features, we constructed 5 prediction models of different machine learning algorithms (Random Forest (RF), Ridge Regression, Naive Bayes, Support Vector Machine, and Artificial Neural Network models). Among those, the RF model showed the highest AUC in the training cohort (0.99 [95%CI 0.86–1.00]) as well as in the validation cohort (0.92 [95%CI 0.71–0.99]) to predict the CRT response. Additionally, Kaplan-Meyer analysis of the validation cohort and all the patient data showed significantly longer progression-free and overall survival in the high-prediction score group compared with the low-prediction score group in the RF model. Univariate and multivariate analyses revealed that the radiomics prediction score and lymph node metastasis were independent prognostic biomarkers for CRT of ESCC. In conclusion, we have developed a CT-based radiomics model using AI, which may have the potential to predict the CRT response as well as the prognosis for ESCC patients with non-invasiveness and cost-effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
入弦发布了新的文献求助10
2秒前
terrence发布了新的文献求助10
6秒前
6秒前
9秒前
镜子完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
14秒前
orixero应助zhou采纳,获得10
14秒前
mimi发布了新的文献求助10
15秒前
momo完成签到,获得积分10
15秒前
可可应助呆萌的雁荷采纳,获得10
16秒前
资明轩发布了新的文献求助10
16秒前
17秒前
秋子发布了新的文献求助10
18秒前
夏枯草发布了新的文献求助10
18秒前
马李啸完成签到,获得积分10
18秒前
科研通AI2S应助丰富又亦采纳,获得10
19秒前
小阳完成签到 ,获得积分10
20秒前
22秒前
入弦完成签到,获得积分10
23秒前
DK_fish完成签到,获得积分10
23秒前
资明轩完成签到,获得积分10
23秒前
23秒前
小易同学完成签到,获得积分10
24秒前
showitt发布了新的文献求助30
25秒前
云泥发布了新的文献求助10
26秒前
123发布了新的文献求助10
30秒前
30秒前
ding应助秋子采纳,获得10
35秒前
JINtian发布了新的文献求助10
35秒前
36秒前
小马甲应助卡他采纳,获得10
38秒前
独特纸飞机完成签到 ,获得积分10
40秒前
40秒前
41秒前
123完成签到,获得积分10
42秒前
科研通AI2S应助丰富又亦采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776896
求助须知:如何正确求助?哪些是违规求助? 3322293
关于积分的说明 10209682
捐赠科研通 3037643
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757984