Harnessing the Power of Multimodal Data: Medical Fusion and Classification

融合 计算机科学 传感器融合 功率(物理) 人工智能 数据科学 语言学 哲学 物理 量子力学
作者
Et al. Bhushan Rajendra Nandwalkar
标识
DOI:10.52783/anvi.v27.318
摘要

In the field of medical diagnosis, combining different types of information like text, images, and audio is a big step forward in making patient assessments more accurate. This research introduces an innovative method to bring together and categorize these different types of data. This method fills an important gap in current research [50, 54]. Proposed approach focuses on turning each type of data—text, images, and audio—into useful numbers. Text data is processed to extract meaning and context, while images are analysed using advanced computer techniques to capture important visual details. We also carefully examine audio data to extract important sound features, which is often overlooked but can be a valuable source of diagnostic information [48]. What makes our method special is how we combine these different types of data. We designed a strategy to blend these diverse sets of numbers into a single, enriched representation. This approach keeps the unique characteristics of each data type intact while harnessing their combined power for diagnosis [22, 29]. After combining the data, we use a well-chosen classification model that's known for its ability to make sense of complex data, especially in medical diagnosis scenarios [67, 71]. Proposed approach is rigorously assessing our method using a set of strong metrics that measure not only how accurate it is but also how reliable and valid it is for diagnosis [90, 94]. The results of this study mark a significant step forward in the field of combining different types of data, showing how it can greatly improve medical diagnosis. This method has the potential to revolutionize healthcare, enabling more precise and comprehensive data-driven decisions [143, 156].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zxj完成签到,获得积分20
刚刚
彭于晏应助寒冷晓凡采纳,获得10
1秒前
2秒前
zxj发布了新的文献求助10
3秒前
月月发布了新的文献求助30
5秒前
Q人士发布了新的文献求助10
5秒前
哒哒发布了新的文献求助10
6秒前
6秒前
lamp完成签到 ,获得积分10
6秒前
6秒前
7秒前
阳光完成签到,获得积分10
8秒前
8秒前
我是老大应助LE采纳,获得10
10秒前
AnnieSsy完成签到,获得积分10
10秒前
泡泡发布了新的文献求助10
10秒前
11秒前
科研通AI5应助zxj采纳,获得10
12秒前
白日梦发布了新的文献求助10
12秒前
General发布了新的文献求助150
12秒前
阳光发布了新的文献求助80
12秒前
炙热的夜雪完成签到 ,获得积分10
13秒前
14秒前
15秒前
wanci应助含糊采纳,获得10
15秒前
16秒前
可爱的函函应助尤珩采纳,获得10
16秒前
泡泡完成签到,获得积分10
16秒前
16秒前
16秒前
干净以珊发布了新的文献求助10
17秒前
顾矜应助月月采纳,获得30
17秒前
aaa完成签到,获得积分10
18秒前
科研混子完成签到,获得积分10
18秒前
白杨木影子被拉长完成签到,获得积分10
20秒前
烟花应助小兵采纳,获得10
20秒前
852应助干净以珊采纳,获得10
22秒前
乐乐乐乐乐乐应助mnm采纳,获得10
22秒前
22秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824270
求助须知:如何正确求助?哪些是违规求助? 3366593
关于积分的说明 10441211
捐赠科研通 3085822
什么是DOI,文献DOI怎么找? 1697557
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769622