Harnessing the Power of Multimodal Data: Medical Fusion and Classification

融合 计算机科学 传感器融合 功率(物理) 人工智能 数据科学 语言学 哲学 物理 量子力学
作者
Et al. Bhushan Rajendra Nandwalkar
标识
DOI:10.52783/anvi.v27.318
摘要

In the field of medical diagnosis, combining different types of information like text, images, and audio is a big step forward in making patient assessments more accurate. This research introduces an innovative method to bring together and categorize these different types of data. This method fills an important gap in current research [50, 54]. Proposed approach focuses on turning each type of data—text, images, and audio—into useful numbers. Text data is processed to extract meaning and context, while images are analysed using advanced computer techniques to capture important visual details. We also carefully examine audio data to extract important sound features, which is often overlooked but can be a valuable source of diagnostic information [48]. What makes our method special is how we combine these different types of data. We designed a strategy to blend these diverse sets of numbers into a single, enriched representation. This approach keeps the unique characteristics of each data type intact while harnessing their combined power for diagnosis [22, 29]. After combining the data, we use a well-chosen classification model that's known for its ability to make sense of complex data, especially in medical diagnosis scenarios [67, 71]. Proposed approach is rigorously assessing our method using a set of strong metrics that measure not only how accurate it is but also how reliable and valid it is for diagnosis [90, 94]. The results of this study mark a significant step forward in the field of combining different types of data, showing how it can greatly improve medical diagnosis. This method has the potential to revolutionize healthcare, enabling more precise and comprehensive data-driven decisions [143, 156].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦白Ccc发布了新的文献求助30
1秒前
龙华之士发布了新的文献求助10
3秒前
文天完成签到,获得积分10
3秒前
淡淡的青柏完成签到,获得积分10
4秒前
5秒前
滕皓轩发布了新的文献求助30
6秒前
ding应助动人的百褶裙采纳,获得10
8秒前
8秒前
fqq完成签到 ,获得积分10
8秒前
烟花应助Dr采纳,获得10
9秒前
unowhoiam发布了新的文献求助30
10秒前
123完成签到,获得积分10
10秒前
谢谢完成签到,获得积分20
12秒前
zho发布了新的文献求助10
12秒前
小欣写写写完成签到,获得积分10
12秒前
情怀应助救我采纳,获得10
12秒前
14秒前
Jianfeng发布了新的文献求助30
15秒前
玛卡巴卡发布了新的文献求助10
15秒前
顺心凡灵完成签到,获得积分10
15秒前
我好想睡发布了新的文献求助10
15秒前
英姑应助啦啦啦采纳,获得10
16秒前
19秒前
21秒前
求知若渴完成签到,获得积分10
22秒前
ppplok发布了新的文献求助10
23秒前
24秒前
tengfei完成签到 ,获得积分10
25秒前
冷酷傲易发布了新的文献求助10
28秒前
1874发布了新的文献求助10
28秒前
33秒前
相宜完成签到 ,获得积分20
33秒前
有魅力敏完成签到,获得积分10
33秒前
卢明月完成签到,获得积分10
34秒前
SciGPT应助santo采纳,获得30
36秒前
SciGPT应助炸药采纳,获得10
37秒前
舒心的冥发布了新的文献求助10
37秒前
冷酷傲易完成签到,获得积分20
39秒前
顺利毕业完成签到 ,获得积分10
40秒前
40秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823778
求助须知:如何正确求助?哪些是违规求助? 3366152
关于积分的说明 10439237
捐赠科研通 3085255
什么是DOI,文献DOI怎么找? 1697277
邀请新用户注册赠送积分活动 816305
科研通“疑难数据库(出版商)”最低求助积分说明 769492