Cerebral Palsy classification based on multi-feature analysis using machine learning

支持向量机 人工智能 多层感知器 机器学习 脑瘫 朴素贝叶斯分类器 计算机科学 决策树 粗大运动功能分类系统 痉挛性双瘫 随机森林 人工神经网络 医学 物理医学与康复
作者
Abrar M. Al-Sowi,Nihad A. Almasri,Bassam Hammo,Fatima Al-Zahra'a Al-Qwaqzeh
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:37: 101197-101197 被引量:10
标识
DOI:10.1016/j.imu.2023.101197
摘要

Cerebral Palsy (CP) is an umbrella name for disorders caused by abnormal brain development or damage to the developing brain. It affects the child's ability to move and maintain balance and posture. CP is the most common cause of motor disability in childhood. CP has various classification systems based on body structure and function, such as the topographic classification into quadriplegia, diplegia, and hemiplegia, or based on activities such as the gross motor function classification system (GMFCS). Classifying children with CP is challenging for clinicians due to the homogeneous nature of the clinical presentations of children with CP. Classifications of CP can guide the planning of services that enhance the quality of life of children and their families. There are a few studies about children with CP in Jordan. Data about children with CP in Jordan are also lacking. This study, therefore, aims to compile a comprehensive, concise, and fully annotated national dataset for Jordanian children with CP and to provide a benchmark for related studies in the field of pediatric rehabilitation medicine (PRM). This work presents the methodology implemented to compile and analyze the dataset and the experiments conducted on this dataset. We evaluated the dataset using a set of five commonly used machine learning classification algorithms, namely, K-Star, Multilayer Perceptron (MLP), Naïve Bayes (NB), Random Tree (RT), and Support Vector Machine (SVM). The MLP classifier successfully classified CP-type cases with an accuracy rate of 84% and GMFCS cases with an accuracy rate of 53%. The obtained results were promising and encouraging to put the compiled CP dataset into practice for clinicians, researchers, and policymakers working in the field of PRM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助pocky采纳,获得10
刚刚
小米粥完成签到,获得积分10
刚刚
纪震宇发布了新的文献求助10
1秒前
1秒前
香雪若梅发布了新的文献求助10
1秒前
JamesPei应助虚幻小霸王采纳,获得10
1秒前
1秒前
AKA鱼完成签到,获得积分10
2秒前
小梁完成签到,获得积分10
2秒前
卿欣完成签到 ,获得积分10
2秒前
2秒前
木棉完成签到,获得积分10
2秒前
无奈水儿发布了新的文献求助10
3秒前
3秒前
辞忧完成签到,获得积分10
3秒前
DDZ发布了新的文献求助10
4秒前
飞快的邴完成签到,获得积分10
4秒前
赘婿应助wanghao采纳,获得10
4秒前
无花果应助111111采纳,获得10
5秒前
5秒前
小梁发布了新的文献求助10
5秒前
luckyWZJ完成签到,获得积分20
6秒前
科研通AI2S应助999999采纳,获得10
6秒前
苏兜兜完成签到,获得积分10
7秒前
8秒前
西西完成签到,获得积分10
8秒前
8秒前
尊敬的语薇完成签到,获得积分10
9秒前
烂漫香水完成签到 ,获得积分10
9秒前
YL发布了新的文献求助10
9秒前
9秒前
9秒前
Jason发布了新的文献求助10
9秒前
笨笨妙旋完成签到,获得积分10
9秒前
10秒前
Wu完成签到,获得积分10
10秒前
10秒前
DDZ完成签到,获得积分10
11秒前
李健的小迷弟应助happiness采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601126
求助须知:如何正确求助?哪些是违规求助? 4686631
关于积分的说明 14845345
捐赠科研通 4679752
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506081
关于科研通互助平台的介绍 1471266