Combining lipidomics and efficacy‐oriented compatibility revealed that Qi Ge decoction compatibility improved lipid metabolism in hyperlipidemic rats

脂类学 化学 甘油磷脂 脂质代谢 相容性(地球化学) 汤剂 甘油三酯 阿托伐他汀 脂代谢紊乱 药理学 血脂 生物化学 色谱法 传统医学 胆固醇 医学 磷脂 地质学 地球化学
作者
Simin Fan,Xiaoqing Yu,Yanfang Li,Zunming Zhou,Jintong Ye,Kaixin Guo,Keer Huang,Xuehong Ke
出处
期刊:Biomedical Chromatography [Wiley]
卷期号:37 (5) 被引量:1
标识
DOI:10.1002/bmc.5595
摘要

The mechanism underlying traditional Chinese medicine (TCM) compatibility is difficult to understand. This study combined lipidomics and efficacy-oriented compatibility to explore underlying compatibility mechanisms of Qi Ge decoction (QG) for improving lipid metabolism in hyperlipidemic rats. The QG was divided into three groups according to the efficacy group strategy: the Huangqi-Gegen (HG), Chenpi (CP), and QG groups. Hyperlipidemic rats were treated with QG, HG, CP, or atorvastatin for 3 weeks. The mass spectral data of widely targeted lipidomics were used to evaluate lipid changes. Principal component analysis and orthogonal partial least squares discriminant analysis were used to assess the lipidomic differences between the groups. MetaboAnalyst 5.0 was used to explore metabolic pathways. Compared with the model group, serum cholesterol, triglyceride, and hepatic steatosis were significantly reduced by QG, whereas HG and CP had no significant effects on these indexes. Lipidomics showed that QG, HG, and CP back-regulated 60, 11, and 14 lipids, respectively. Compared with HG and CP, QG had more metabolic targets in diglycerides, triglycerides, ceramides, and phosphatidylethanolamines. Pathway analysis indicated that QG mainly regulated glycerophospholipid and glycerolipid metabolism. This study provided a new method of combining lipidomics and efficacy-oriented compatibility for exploring the scientific connotation of TCM compatibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjzjzhujun发布了新的文献求助10
刚刚
1秒前
2秒前
禺豸虎发布了新的文献求助50
2秒前
3秒前
烟花应助Circle采纳,获得10
4秒前
种花兔发布了新的文献求助10
4秒前
Joins_Su完成签到 ,获得积分10
4秒前
小韦同学发布了新的文献求助100
4秒前
michaelxia完成签到,获得积分10
5秒前
5秒前
Philip发布了新的文献求助10
5秒前
SciGPT应助有点意思采纳,获得10
6秒前
8R60d8应助able采纳,获得50
10秒前
简单面包完成签到,获得积分10
10秒前
10秒前
11秒前
wangyy65完成签到 ,获得积分10
13秒前
adada完成签到,获得积分20
15秒前
16秒前
彭于晏应助含羞草采纳,获得10
16秒前
浮游应助超cute宁采纳,获得10
16秒前
17秒前
18秒前
18秒前
王鸿鑫发布了新的文献求助10
22秒前
lily_lin完成签到,获得积分10
22秒前
22秒前
邓娅琴发布了新的文献求助10
23秒前
23秒前
王娇完成签到,获得积分10
23秒前
23秒前
23秒前
亭瞳发布了新的文献求助10
23秒前
23秒前
温暖的问候完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
优雅醉山发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194958
求助须知:如何正确求助?哪些是违规求助? 4377124
关于积分的说明 13631420
捐赠科研通 4232342
什么是DOI,文献DOI怎么找? 2321565
邀请新用户注册赠送积分活动 1319686
关于科研通互助平台的介绍 1270113