Age and medial compartmental OA were important predictors of the lateral compartmental OA in the discoid lateral meniscus: Analysis using machine learning approach

接收机工作特性 舱室(船) 医学 磁共振成像 骨关节炎 子群分析 骨科手术 人工智能 机器学习 外科 计算机科学 病理 内科学 放射科 置信区间 地质学 替代医学 海洋学
作者
Joon Hee Cho,Myeongju Kim,Hee Seung Nam,Seong Yun Park,Yong Seuk Lee
出处
期刊:Knee Surgery, Sports Traumatology, Arthroscopy [Springer Nature]
卷期号:32 (7): 1660-1671 被引量:2
标识
DOI:10.1002/ksa.12196
摘要

Abstract Purpose The objective of this study was to develop a machine learning model that would predict lateral compartment osteoarthritis (OA) in the discoid lateral meniscus (DLM), from which to then identify factors contributing to lateral compartment OA, with a key focus on the patient's age. Methods Data were collected from 611 patients with symptomatic DLM diagnosed using magnetic resonance imaging between April 2003 and May 2022. Twenty features, including demographic, clinical and radiological data and six algorithms were used to develop the predictive machine learning models. Shapley additive explanation (SHAP) analysis was performed on the best model, in addition to subgroup analyses according to age. Results Extreme gradient boosting classifier was identified as the best prediction model, with an area under the receiver operating characteristic curve (AUROC) of 0.968, the highest among all the models, regardless of age (AUROC of 0.977 in young age and AUROC of 0.937 in old age). In the SHAP analysis, the most predictive feature was age, followed by the presence of medial compartment OA. In the subgroup analysis, the most predictive feature was age in young age, whereas the most predictive feature was the presence of medial compartment OA in old age. Conclusion The machine learning model developed in this study showed a high predictive performance with regard to predicting lateral compartment OA of the DLM. Age was identified as the most important factor, followed by medial compartment OA. In subgroup analysis, medial compartmental OA was found to be the most important factor in the older age group, whereas age remained the most important factor in the younger age group. These findings provide insights that may prove useful for the establishment of strategies for the treatment of patients with symptomatic DLM. Level of Evidence Level III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
木子李完成签到,获得积分10
1秒前
2秒前
大个应助大宇宙银河采纳,获得10
2秒前
3秒前
4秒前
sisy发布了新的文献求助10
5秒前
大个应助Gtpangda采纳,获得10
7秒前
洋溢完成签到,获得积分10
7秒前
cfk关注了科研通微信公众号
7秒前
马柒柒完成签到,获得积分10
8秒前
8秒前
赘婿应助SHI采纳,获得10
8秒前
天天快乐应助不安的彩虹采纳,获得10
8秒前
hhhhhhhhhh发布了新的文献求助10
8秒前
小张发布了新的文献求助10
9秒前
共享精神应助红与黑采纳,获得10
10秒前
小二郎应助Duomo采纳,获得50
10秒前
10秒前
星辰大海应助轻松的贞采纳,获得10
11秒前
11秒前
11秒前
SciGPT应助dengty采纳,获得10
12秒前
ace发布了新的文献求助10
14秒前
15秒前
zzc发布了新的文献求助10
15秒前
Ddd发布了新的文献求助10
15秒前
TX发布了新的文献求助10
15秒前
邵小庆发布了新的文献求助10
16秒前
16秒前
17秒前
小王同学完成签到,获得积分10
17秒前
Mint发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
情怀应助李成博采纳,获得10
19秒前
19秒前
Orange应助科研通管家采纳,获得10
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344456
求助须知:如何正确求助?哪些是违规求助? 4479697
关于积分的说明 13944205
捐赠科研通 4376849
什么是DOI,文献DOI怎么找? 2404949
邀请新用户注册赠送积分活动 1397495
关于科研通互助平台的介绍 1369791